cDNA clone for the human invariant gamma chain of class II histocompatibility antigens and its implications for the protein structure. 1983

L Claesson, and D Larhammar, and L Rask, and P A Peterson

The invariant gamma chain is transitorily associated with class II histocompatibility antigens during intracellular transport. We have isolated and sequenced a cDNA clone corresponding to the human gamma chain. mRNA hybridizing to the cDNA clone translated into a 33,000-dalton chain that associated specifically with class II antigen alpha and beta chains. The gamma chain consists of 216 amino acids. The two N-linked carbohydrates are attached to asparagines 114 and 120. A continuous stretch of hydrophobic and neutral amino acids occurs in positions 31-56 from the NH2 terminus. This region seems to constitute the transmembrane portion of the polypeptide chain. The positions of the carbohydrate moieties and the putative transmembrane segment indicate that the NH2 terminus of the gamma chain resides on the cytoplasmic side of the membrane. Cell-free translations in conjunction with radiochemical amino acid sequence analyses suggest that the gamma chain lacks an NH2-terminal signal sequence.

UI MeSH Term Description Entries
D007142 Immunoglobulin gamma-Chains Heavy chains of IMMUNOGLOBULIN G having a molecular weight of approximately 51 kDa. They contain about 450 amino acid residues arranged in four domains and an oligosaccharide component covalently bound to the Fc fragment constant region. The gamma heavy chain subclasses (for example, gamma 1, gamma 2a, and gamma 2b) of the IMMUNOGLOBULIN G isotype subclasses (IgG1, IgG2A, and IgG2B) resemble each other more closely than the heavy chains of the other IMMUNOGLOBULIN ISOTYPES. Immunoglobulins, gamma-Chain,Immunoglobulin gamma-Chain,gamma Immunoglobulin Heavy Chain,gamma Immunoglobulin Heavy Chains,gamma-1-Immunoglobulin Heavy Chain,gamma-2a-Immunoglobulin Heavy Chain,gamma-2b-Immunoglobulin Heavy Chain,gamma-Chain Immunoglobulins,Heavy Chain, gamma-1-Immunoglobulin,Heavy Chain, gamma-2a-Immunoglobulin,Heavy Chain, gamma-2b-Immunoglobulin,Immunoglobulin gamma Chain,Immunoglobulin gamma Chains,Immunoglobulins, gamma Chain,gamma 1 Immunoglobulin Heavy Chain,gamma 2a Immunoglobulin Heavy Chain,gamma 2b Immunoglobulin Heavy Chain,gamma Chain Immunoglobulins,gamma-Chain, Immunoglobulin,gamma-Chains, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

L Claesson, and D Larhammar, and L Rask, and P A Peterson
December 1985, Nucleic acids research,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
November 1985, Journal of immunology (Baltimore, Md. : 1950),
L Claesson, and D Larhammar, and L Rask, and P A Peterson
January 1986, Journal of immunology (Baltimore, Md. : 1950),
L Claesson, and D Larhammar, and L Rask, and P A Peterson
December 1988, Nucleic acids research,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
April 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
October 1994, The Journal of biological chemistry,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
April 1984, The EMBO journal,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
January 1996, The EMBO journal,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
November 1986, The Journal of experimental medicine,
L Claesson, and D Larhammar, and L Rask, and P A Peterson
June 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!