Cloning and characterization of the gene for Salmonella typhimurium serine hydroxymethyltransferase. 1984

M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer

A plasmid containing the glyA gene of Salmonella typhimurium LT2 was constructed in vitro using plasmid pACYC184 as the cloning vector and a lambda gt7-glyA transducing phage as the source of glyA DNA. The recombinant plasmid (pGS30) contains a 10-kb EcoRI insert fragment. Genetic and biochemical experiments established that the fragment contains a functional glyA gene. From plasmid pGS30 we subcloned a 4.4-kb SalI-EcoRI fragment containing the glyA gene and its neighboring regions (plasmid pGS38). The location and orientation of the glyA gene within the 4.4-kb insert fragment was determined in four ways: (1) comparison of the physical map of the 4.4-kb SalI-EcoRI fragment with the physical map of a 2.6-kb SalI-PvuII fragment that carries the Escherichia coli glyA gene; (2) deletion analysis; (3) transposon Tn5 insertional inactivation experiments; (4) deoxyribonucleic acid sequencing and comparison of the S. typhimurium DNA sequence with the E. coli DNA sequence. A presumptive glyA-encoded polypeptide of Mr 47000 was detected using plasmid pGS38 as template in a minicell system, but not when the glyA gene was inactivated by insertion of a Tn5 element.

UI MeSH Term Description Entries
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D012696 Glycine Hydroxymethyltransferase A pyridoxal phosphate enzyme that catalyzes the reaction of glycine and 5,10-methylene-tetrahydrofolate to form serine. It also catalyzes the reaction of glycine with acetaldehyde to form L-threonine. EC 2.1.2.1. Serine Aldolase,Serine Hydroxymethylase,Serine Hydroxymethyltransferase,Serine Transhydroxymethylase,Threonine Aldolase,Allothreonine Aldolase,Aldolase, Allothreonine,Aldolase, Serine,Aldolase, Threonine,Hydroxymethylase, Serine,Hydroxymethyltransferase, Glycine,Hydroxymethyltransferase, Serine,Transhydroxymethylase, Serine
D014166 Transferases Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2. Transferase

Related Publications

M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
January 1997, The Journal of biological chemistry,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
June 2008, Parasitology international,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
June 1984, Journal of bacteriology,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
April 1998, Gene,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
April 1983, Gene,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
September 1996, Biochimica et biophysica acta,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
April 2006, Protein expression and purification,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
April 2007, Protein expression and purification,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
January 1990, Research in microbiology,
M L Urbanowski, and M D Plamann, and L T Stauffer, and G V Stauffer
January 1987, Gene,
Copied contents to your clipboard!