Characterization of the pace-maker current kinetics in calf Purkinje fibres. 1984

D DiFrancesco

Kinetics of the cardiac pace-maker current (if) were studied using high K+, low Na+ solutions under conditions where the current time course could be dissected from other components. Activation of if during relatively large negative pulses is S-shaped, and is approximated by an exponential function of time to the third power. Less-pronounced S-shaped activation occurs at potentials close to the middle of the activation curve (near -70/-80 mV). Here, allowing for the presence of a very slow component, the power required to fit the current activation approaches 1. The comparison between current activation and deactivation at the same potentials shows that although deactivation can be approximated by a single exponential, the two processes have a quite different time dependence, and this difference depends on the membrane potential. This behaviour is not compatible with Hodgkin-Huxley kinetics. While near the half-activation range the current decays with an apparently single exponential time course, at more positive potentials the current deactivation becomes sigmoidal. At least the third power of an exponential is required to fit its time course at potentials positive to about -40 mV. These data imply that both open and closed states correspond to several distinct channel configurations. The 'delay' in the current onset during a hyperpolarization is decreased by applying large, short hyperpolarizations before activation. Suitable pre-pulse durations and/or amplitudes can reduce the subsequent current activation to a single exponential. Records with and without a pre-pulse do not always superimpose. After the activation 'delay' has been removed by a suitable hyperpolarization preceding an activating pulse, the time course of its recovery can be studied by applying depolarizations of given amplitude and variable duration. The time course of the delay recovery does not seem to be linked to the time course of current deactivation recorded at the same voltage. Reduction of the activation 'delay' by conditioning pre-hyperpolarizations does not affect current decay during a subsequent depolarizing pulse. The current decay appears to depend only on the current amplitude reached before a deactivating pulse is applied. This, and the evidence in the preceding paragraph, suggest that the delay recovery and the current deactivation are independent processes. A reaction scheme is proposed, which has been developed on the basis of the experimentally determined kinetic properties of if. The channel model is composed of five gating subunits of three different types, not all independent in their movements.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes

Related Publications

D DiFrancesco
May 1985, Pflugers Archiv : European journal of physiology,
D DiFrancesco
July 1978, The Journal of physiology,
D DiFrancesco
February 1980, The Journal of physiology,
Copied contents to your clipboard!