Calcium-activated transient outward current in calf cardiac Purkinje fibres. 1980

S A Siegelbaum, and R W Tsien

1. The possibility that the transient outward current of calf cardiac Purkinje fibres depends on intracellular calcium was investigated using a two micro-electrode voltage clamp. 2. Upon removal of Cao and replacement with Sr or Ba, the transient outward current was strongly suppressed. At the same time a large slow inward current was revealed. 3. Partial removal of Cao with replacement by Mg also diminished the transient outward current. The inhibition was not due to voltage shifts in the inactivation curve. 4. The kinetics of the peak transient outward current were compared with the kinetics of peak twitch force, an approximate measure of the level of Cai. The two signals were related in a linear manner during beat-dependent changes with trains of voltage clamp depolarizations. 5. Tension and transient outward current were also found to inactivate with a similar dependence on pre-potential and recover from inactivation along a similar time course. Both processes activated with membrane depolarization in a similar manner. 6. Intracellular injection of EGTA reduced the magnitude of the transient outward current and the twitch contraction. 7. The inhibition of outward current following EGTA injection was more pronounced for strong depolarizations. With pulses negative to - 10 mV, there was often little apparent change in the peak net outward current. 8. All lines of evidence support the hypothesis that the transient outward current is activated by intracellular Ca. 9. The functional significance of the transient outward current is discussed. Since a Ca-activated outward current would automatically offset slow inward Ca current, such a system may help prevent arrhythmogenic slow responses in the His-Purkinje network.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005711 Gallopamil Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring. Methoxyverapamil,D-600,D600,Elgiprona,Gallobeta,Gallopamil Hydrochloride,Prebet,Procorum,gallopamil von ct,D 600,Hydrochloride, Gallopamil
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Siegelbaum, and R W Tsien
January 1969, The Journal of physiology,
S A Siegelbaum, and R W Tsien
October 1966, The Journal of physiology,
S A Siegelbaum, and R W Tsien
December 1989, Naunyn-Schmiedeberg's archives of pharmacology,
S A Siegelbaum, and R W Tsien
August 1978, The Journal of physiology,
S A Siegelbaum, and R W Tsien
April 1988, Pflugers Archiv : European journal of physiology,
S A Siegelbaum, and R W Tsien
October 1996, Journal of molecular and cellular cardiology,
S A Siegelbaum, and R W Tsien
February 1982, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!