The effect of phenformin and other adenosine triphosphate (ATP)-lowering agents on insulin binding to IM-9 human cultured lymphocytes. 1984

R Vigneri, and B Maddux, and I D Goldfine

In the present study, we investigated the mechanism by which the antidiabetic drug phenformin increases insulin binding to its receptors in IM-9 human cultured lymphocytes. After a 24-hr preincubation, phenformin induced a twofold increase in specific 125I-insulin binding, and removal of phenformin was followed 6 hr later by a return in binding to control levels. This effect of phenformin on insulin binding was not a consequence of either inhibition of cell growth, changes in cellular cyclic adenosine monophosphate (AMP) levels, or changes in guanosine triphosphate (GTP) content. Since phenformin is known to inhibit various aspects of cellular energy metabolism, the relationship between 125I-insulin binding and energy metabolism in IM-9 cells was investigated. The phenformin-induced increase in insulin binding to IM-9 cells was related to a time- and dose-dependent decrease in ATP levels. Other agents that lowered ATP levels, including antimycin, dinitrophenol, and 2-deoxyglucose, also raised insulin binding. These studies indicated, therefore, that phenformin enhances insulin binding to receptors on IM-9 cells and that this effect on insulin receptors may be related to alterations in metabolic functions that are reflected by a lowering of ATP levels.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D010629 Phenformin A biguanide hypoglycemic agent with actions and uses similar to those of METFORMIN. Although it is generally considered to be associated with an unacceptably high incidence of lactic acidosis, often fatal, it is still available in some countries. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290) Fenformin,Phenylethylbiguanide
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

R Vigneri, and B Maddux, and I D Goldfine
November 1982, Metabolism: clinical and experimental,
R Vigneri, and B Maddux, and I D Goldfine
January 1981, Journal of endocrinological investigation,
R Vigneri, and B Maddux, and I D Goldfine
September 1980, Diabetes,
R Vigneri, and B Maddux, and I D Goldfine
July 1987, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R Vigneri, and B Maddux, and I D Goldfine
January 1980, Journal of endocrinological investigation,
R Vigneri, and B Maddux, and I D Goldfine
August 1980, The Journal of biological chemistry,
R Vigneri, and B Maddux, and I D Goldfine
February 1985, Science (New York, N.Y.),
R Vigneri, and B Maddux, and I D Goldfine
July 1985, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R Vigneri, and B Maddux, and I D Goldfine
February 1981, Proceedings of the National Academy of Sciences of the United States of America,
R Vigneri, and B Maddux, and I D Goldfine
October 1977, The Journal of clinical investigation,
Copied contents to your clipboard!