Expression of muscarinic binding sites in primary human brain tumors. 1984

D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq

The expression of muscarinic binding sites was examined in a collection of primary brain tumors of different cellular origins and various degrees of dedifferentiation, as compared to control specimens. Eleven gliogenous tumors were examined, all of which contained substantial amounts of muscarinic binding sites. Most of the other tumor types examined did not display detectable binding of [3H]N-methyl-4-piperidyl benzilate ([3H]4NMPB). Scatchard analysis indicated the existence of homogeneous antagonist sites in both normal forebrain and glioblastoma multiforme, with Kd values of 1.2 nM and 0.9 nM, respectively. The density of muscarinic binding sites varied between tumors from different patients, and also between specimens prelevated from different areas of the same tumor. This variability, as well as the average density of binding sites, appeared to be larger in highly malignant tumors than in less malignant ones. In contrast, the density of muscarinic receptors from control specimens was invariably high, but within the same order of magnitude. To test whether the muscarinic binding activity in the brain tumors is correlated to other cholinoceptive properties, cholinesterase activity was also examined. Individual data for density of [3H]4NMPB binding sites were then plotted against corresponding values of cholinesterase activity. The pattern of distribution of these values was clearly different in tumor specimens, when compared to that observed in samples derived from non-malignant brain. Our observations indicate that human brain cells of gliogenous origin are capable of expressing muscarinic binding sites, and that, if a correlation exists between muscarinic receptors and cholinesterase levels in gliogenous tumors, it differs from that of non-malignant brain tissue.

UI MeSH Term Description Entries
D008297 Male Males
D008577 Meningeal Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the meningeal coverings of the brain and spinal cord. Intracranial Meningeal Neoplasms,Spinal Meningeal Neoplasms,Benign Meningeal Neoplasms,Leptomeningeal Neoplasms,Malignant Meningeal Neoplasms,Meningeal Cancer,Meningeal Neoplasms, Benign,Meningeal Neoplasms, Intracranial,Meningeal Neoplasms, Malignant,Meningeal Tumors,Neoplasms, Leptomeningeal,Neoplasms, Meningeal,Benign Meningeal Neoplasm,Cancer, Meningeal,Cancers, Meningeal,Intracranial Meningeal Neoplasm,Leptomeningeal Neoplasm,Malignant Meningeal Neoplasm,Meningeal Cancers,Meningeal Neoplasm,Meningeal Neoplasm, Benign,Meningeal Neoplasm, Intracranial,Meningeal Neoplasm, Malignant,Meningeal Neoplasm, Spinal,Meningeal Neoplasms, Spinal,Meningeal Tumor,Neoplasm, Benign Meningeal,Neoplasm, Intracranial Meningeal,Neoplasm, Leptomeningeal,Neoplasm, Malignant Meningeal,Neoplasm, Meningeal,Neoplasm, Spinal Meningeal,Neoplasms, Benign Meningeal,Neoplasms, Intracranial Meningeal,Neoplasms, Malignant Meningeal,Neoplasms, Spinal Meningeal,Spinal Meningeal Neoplasm,Tumor, Meningeal,Tumors, Meningeal
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002528 Cerebellar Neoplasms Primary or metastatic neoplasms of the CEREBELLUM. Tumors in this location frequently present with ATAXIA or signs of INTRACRANIAL HYPERTENSION due to obstruction of the fourth ventricle. Common primary cerebellar tumors include fibrillary ASTROCYTOMA and cerebellar HEMANGIOBLASTOMA. The cerebellum is a relatively common site for tumor metastases from the lung, breast, and other distant organs. (From Okazaki & Scheithauer, Atlas of Neuropathology, 1988, p86 and p141) Benign Cerebellar Neoplasms,Cerebellar Cancer,Malignant Cerebellar Neoplasms,Cerebellar Neoplasms, Benign,Cerebellar Neoplasms, Malignant,Cerebellar Neoplasms, Primary,Cerebellar Tumors,Neoplasms, Cerebellar,Neoplasms, Cerebellar, Benign,Neoplasms, Cerebellar, Malignant,Neoplasms, Cerebellar, Primary,Primary Neoplasms, Cerebellum,Benign Cerebellar Neoplasm,Cancer, Cerebellar,Cerebellar Cancers,Cerebellar Neoplasm,Cerebellar Neoplasm, Benign,Cerebellar Neoplasm, Malignant,Cerebellar Neoplasm, Primary,Cerebellar Tumor,Cerebellum Primary Neoplasm,Cerebellum Primary Neoplasms,Malignant Cerebellar Neoplasm,Neoplasm, Benign Cerebellar,Neoplasm, Cerebellar,Neoplasm, Cerebellum Primary,Neoplasm, Malignant Cerebellar,Primary Cerebellar Neoplasm,Primary Cerebellar Neoplasms,Primary Neoplasm, Cerebellum,Tumor, Cerebellar
D002802 Cholinesterases Acylcholineacylhydrolase,Cholase,Cholinesterase
D005260 Female Females

Related Publications

D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
April 1978, Biochemical and biophysical research communications,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
January 1986, Journal of neurochemistry,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
January 1980, Acta physiologica Scandinavica. Supplementum,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
January 1985, Neurochemistry international,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
November 1987, International journal of clinical pharmacology, therapy, and toxicology,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
January 1979, Molecular pharmacology,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
July 1981, Life sciences,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
March 1989, The Journal of pharmacology and experimental therapeutics,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
March 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
D Gurwitz, and N Razon, and M Sokolovsky, and H Soreq
January 1986, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
Copied contents to your clipboard!