Identification of tyrosine residues that are susceptible to lactoperoxidase-catalyzed iodination on the surface of Escherichia coli 30S ribosomal subunit. 1983

J Wower, and P Maly, and M Zobawa, and R Brimacombe

The detailed surface topography of the Escherichia coli 30S ribosomal subunit has been investigated, with iodination catalyzed by immobilized lactoperoxidase as the surface probe. Under mild conditions, only proteins S3, S7, S9, S18, and S21 were iodinated to a significant and reproducible extent. These proteins were isolated from the iodinated subunits, and in each case, the individual tyrosine residues that had reacted were identified by standard protein sequencing techniques. The targets of iodination that could be positively established were as follows: in protein S3 (232 amino acids), the tyrosines at positions 167 and 192; in S7 (153 amino acids), tyrosines 84 and 152; in S9 (128 amino acids), tyrosine 89; in S18 (74 amino acids), tyrosine 3 (tentative); in S21 (70 amino acids), tyrosines 37 and 70. The results represent part of a broader program to investigate ribosomal topography at the amino acid-nucleotide level.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007784 Lactoperoxidase An enzyme derived from cow's milk. It catalyzes the radioiodination of tyrosine and its derivatives and of peptides containing tyrosine.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

J Wower, and P Maly, and M Zobawa, and R Brimacombe
September 1972, Biochimica et biophysica acta,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
October 1987, Biochimie,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
December 1978, European journal of biochemistry,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
March 1979, Canadian journal of biochemistry,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
January 1974, Journal of supramolecular structure,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
January 1986, Biophysical journal,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
June 1975, FEBS letters,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
June 1976, Biochemical and biophysical research communications,
J Wower, and P Maly, and M Zobawa, and R Brimacombe
January 1972, Biochemical and biophysical research communications,
Copied contents to your clipboard!