Expression of glial antigens C1 and M1 in the peripheral nervous system during development and regeneration. 1984

M Schachner, and I Sommer, and C Lagenaur

The expression of C1 and M1 antigens was studied by indirect immunofluorescence methods in histological sections of peripheral nerves and ganglia of C57BL/6J mice during development and regeneration. In sciatic nerves of adult mice, C1 but not M1 antigen is found in vimentin- and glial fibrillary acidic protein (GFAP)-positive Schwann cells. A similar distribution is also seen in trigeminal nerve, dorsal root and superior cervical ganglia, and olfactory nerve. In all cases vimentin-positive structures outnumber GFAP- or C1 antigen-positive ones. At birth, C1 antigen and vimentin are expressed in sciatic nerves, but GFAP is not yet detectable. M1 antigen cannot be detected in Schwann cells. In monolayer cultures of neonatal mouse dorsal root ganglia, C1 antigen is expressed in a fibrillary staining pattern in some, but not all morphologically identified Schwann cells. In vitro, M1 antigen is not detectable in Schwann cells. After lesioning sciatic nerves of adult mice by cut or crush, detectable levels of C1 antigen rise after 4-6 days: The number of immunofluorescently labeled structures and their relative intensities are drastically augmented, first distally more so than proximally, over control values from non-lesioned, i.e. contralateral nerves. A similar augmentation is also observed for vimentin and GFAP. M1 antigen expression does not reach detectable levels in Schwann cells under these conditions. The increased detectability of C1 antigen persists up to 150 days after lesioning, the longest time period tested.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen

Related Publications

M Schachner, and I Sommer, and C Lagenaur
April 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Schachner, and I Sommer, and C Lagenaur
February 1990, Journal of cell science,
M Schachner, and I Sommer, and C Lagenaur
June 1997, Journal of molecular neuroscience : MN,
M Schachner, and I Sommer, and C Lagenaur
January 1991, Annals of the New York Academy of Sciences,
M Schachner, and I Sommer, and C Lagenaur
January 1996, Progress in brain research,
M Schachner, and I Sommer, and C Lagenaur
December 1986, Neurochemical pathology,
M Schachner, and I Sommer, and C Lagenaur
January 1989, Neuropathology and applied neurobiology,
M Schachner, and I Sommer, and C Lagenaur
January 1995, Comptes rendus des seances de la Societe de biologie et de ses filiales,
M Schachner, and I Sommer, and C Lagenaur
January 2000, Izvestiia Akademii nauk. Seriia biologicheskaia,
Copied contents to your clipboard!