Modification of cytochrome P-450 with fluorescein isothiocyanate. 1983

R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul

Fluorescein isothiocyanate (FITC) has been shown to be selectively attached to the N-terminus of cytochrome P-450 LM2. The N-demethylase activity of cytochrome P-450 LM2 reconstituted systems modified in this way was inhibited by 25%. As revealed by CD measurements the overall conformation as well as the immediate heme environment of cytochrome P-450 LM2 remained unchanged after attachment of the FITC molecule. The binding affinity of modified cytochrome P-450 LM2 toward benzphetamine and aniline and the cumene hydroperoxide- or H2O2-supported N-demethylation of benzphetamine are maintained. However, the introduction of the electron via NADPH-cytochrome P-450 reductase (EC 1.6.2.4) is impaired after modification of the alpha-amino group. The extent of reduced modified cytochrome P-450 LM2 in the cytochrome P-450 reductase-supported reduction reaction is diminished and the half-time of the reduction is increased. The diminished reducibility is ascribed to steric hindrance of groups directly involved in the interaction between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase or to blocking of the charge-pair interactions between the alpha-amino group of P-450 LM2 and the respective negatively charged group of NADPH-cytochrome P-450 reductase. By energy-transfer measurements distances between the heme and the alpha-amino group of 2.65 and 3.97 nm for the oligomeric and the monomeric forms of P-450 LM2, respectively, have been determined.

UI MeSH Term Description Entries
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates
D016650 Fluorescein-5-isothiocyanate Fluorescent probe capable of being conjugated to tissue and proteins. It is used as a label in fluorescent antibody staining procedures as well as protein- and amino acid-binding techniques. FITC,5-Isothiocyanatofluorescein,Fluorescein (5 or 6)-Isothiocyanate,Fluorescein-5-isothiocyanate Hydrochloride,5 Isothiocyanatofluorescein,Fluorescein 5 isothiocyanate,Fluorescein 5 isothiocyanate Hydrochloride,Hydrochloride, Fluorescein-5-isothiocyanate

Related Publications

R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
May 1983, Biochemical and biophysical research communications,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
November 1984, Biochimica et biophysica acta,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
November 1986, Science (New York, N.Y.),
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
January 1990, Vestnik Akademii meditsinskikh nauk SSSR,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
September 1988, Biochemical and biophysical research communications,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
January 1989, Drug metabolism reviews,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
January 1983, Die Nahrung,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
January 1990, Comparative biochemistry and physiology. B, Comparative biochemistry,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
May 1994, General pharmacology,
R Bernhardt, and N T Ngoc Dao, and H Stiel, and W Schwarze, and J Friedrich, and G R Jänig, and K Ruckpaul
June 1982, The Journal of biological chemistry,
Copied contents to your clipboard!