Analysis of the antimutagenic effect of cinnamaldehyde on chemically induced mutagenesis in Escherichia coli. 1983

T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada

The antimutagenic effect of cinnamaldehyde on mutagenesis was investigated using ten kinds of chemical mutagen in Escherichia coli WP2s (uvr A-). In addition, the frequency of mutation induction by each mutagen in an SOS repair deficient (umuC-) strain was compared with that in a wild-type (umuC+) strain. Cinnamaldehyde greatly suppressed the umuC-dependent mutagenesis induced by 4-nitroquinoline 1-oxide (4-NQO), furylfuramide or captan. However, cinnamaldehyde was less effective against the umuC-independent mutagenesis by alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine and ethylmethanesulfonate. On the other hand, no inhibitory effect of cinnamaldehyde was observed on prophage induction or tif-mediated filamentous growth. These results suggest that a cinnamaldehyde does not prevent the induction of the SOS functions. Despite the decrease in the number of revertants, a remarkable increase was observed in the survival of 4-NQO-treated WP2s cells after exposure to cinnamaldehyde. The reactivation of survival suggests the promotion of some DNA repair system by cinnamaldehyde. This enhancement of survival was also observed in uvr B, polA, recF or umuC mutants and less in lexA or recB, C mutants. However, it was not observed in recA mutants. Therefore, we assume that cinnamaldehyde may enhance an error-free recombinational repair system by acting on recA-enzyme activity.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000171 Acrolein Unsaturated three-carbon aldehyde. 2-Propenal,Acraldehyde,Acrylaldehyde,Acrylic Aldehyde,Allyl Aldehyde,Aqualin,Ethylene Aldehyde,2 Propenal,Aldehyde, Acrylic,Aldehyde, Allyl,Aldehyde, Ethylene
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions
D015112 4-Nitroquinoline-1-oxide A potent mutagen and carcinogen. This compound and its metabolite 4-HYDROXYAMINOQUINOLINE-1-OXIDE bind to nucleic acids. It inactivates bacteria but not bacteriophage. 4-Nitroquinoline-N-oxide,4 Nitroquinoline 1 oxide,4 Nitroquinoline N oxide

Related Publications

T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
March 1985, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
July 1990, Mutagenesis,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
December 1989, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
June 1997, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
July 2010, The Journal of urology,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
January 1989, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
December 2006, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
April 1982, Gan,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
September 1980, Mutation research,
T Ohta, and K Watanabe, and M Moriya, and Y Shirasu, and T Kada
January 1990, Progress in clinical and biological research,
Copied contents to your clipboard!