Metabolism of deoxynucleosides by lymphocytes in long-term culture deficient in different purine enzymes. 1984

H A Simmonds, and A Goday, and G S Morris, and M F Brolsma

The metabolism of 8-14C-labelled 2'-deoxyadenosine (dAR) and 2'-deoxyguanosine (dGR) has been investigated using lymphocytes in long-term culture transformed by Epstein-Barr (EB) virus (B-cells) from eight patients with different inherited purine enzyme defects. The use of such lines enabled accurate mapping of the route of metabolism by acting as a 'trap' for the radiolabel at specific points. With either substrate (25 microM) most of the label was recovered in the medium. Using dAR, less than 30% of the radiolabel was incorporated into cellular nucleotides. For dGR, values were less than 18%. Studies with dAR alone confirmed the principal route of metabolism was to hypoxanthine, with further metabolism (by lines with intact salvage pathways) to ATP and GTP in the ratio of approximately 4:1. Lack of accumulation of deoxyinosine in the purine nucleoside phosphorylase (PNP) deficient line, or hypoxanthine in the hypoxanthine guanine phosphoribosyltransferase (HGPRT) deficient line, using dAR together with the adenosine deaminase (ADA) inhibitor 2'-deoxycoformycin (dCF) at 10 microM, confirmed the effectiveness of ADA inhibition. Nevertheless, some ATP was still formed by all lines in the presence of dCF by a route as yet unknown. Only the ADA deficient lines formed dATP with dAR alone. However, some dATP was formed by all lines in the presence of dCF. A partially HGPRT deficient line formed extremely high dATP levels, well in excess of those formed by the T-cell line CEM. Studies with dGR revealed some interesting differences, a large proportion of the substrate being metabolized predominantly to xanthine by most enzyme deficient lines. In the PNP deficient line most of the substrate remained unmetabolized, but some dGTP was formed. No other enzyme deficient line formed any dGTP--with or without the PNP inhibitor 8-aminoguanosine (8-NH2GR)--with one exception. Again this was the partially HGPRT deficient line, which with the inhibitor again formed more dGTP than the T-cell line. Within the cells most of the substrate was metabolized to GTP, except in the PNP, and totally HGPRT deficient lines. Levels of GTP formed were not altered by the inhibitor, reflecting the lack of effective PNP inhibition by 8-NH2GR. Some counts were also found in ATP and IMP, confirming the existence of this route in mammalian cells of lymphoid origin. The results also support previous studies by us using cell lines with intact purine pathways, which demonstrated that, contrary to current beliefs, some B-cell lines are capable of accumulating high levels of deoxynucleotides.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D011686 Purine-Pyrimidine Metabolism, Inborn Errors Dysfunctions in the metabolism of PURINES or PYRIMIDINES resulting from inborn genetic mutations that are inherited or acquired in utero. Purine Pyrimidine Metabolism, Inborn Errors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D006151 Guanosine A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
January 1980, Journal of immunological methods,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
January 1984, International journal of tissue reactions,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
April 2003, Klinicheskaia laboratornaia diagnostika,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
August 1973, Pediatric research,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
January 1984, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
January 1978, Monographs in human genetics,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
June 1979, Blut,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
February 1983, Clinical biochemistry,
H A Simmonds, and A Goday, and G S Morris, and M F Brolsma
September 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!