Prostaglandin H synthase-dependent co-oxygenation of (+/-)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene in hamster trachea and human bronchus explants. 1984

G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling

The role of prostaglandin H synthase (PHS) in the metabolism of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) has been examined in short-term explant cultures of hamster and human tracheobronchial tissues. Labeled BP-7,8-diol was incubated with the explants in the presence and absence of the PHS substrate arachidonic acid (20:4) and the PHS inhibitor indomethacin. The addition of 10 microM to 200 microM 20:4 to incubations of hamster trachea with 5 microM BP-7,8-diol caused significant increases in the formation of 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[ a]pyrene (anti-BPDE). These increases were not seen when 1 microM or 20 microM BP-7,8-diol was employed. The stimulation of anti-BPDE formation was observed after incubations of from 1 to 48 h. This stimulation was inhibited to the basal level by 20 microM indomethacin, supporting the role of PHS in the response. No effect of 20:4 was seen on the uptake of BP-7,8-diol by the tracheas or on the formation of water-soluble metabolites. Significant increases in covalent binding of BP-7,8-diol metabolites to DNA of the tracheal epithelium were also elicited by the addition of 20:4, however these increases were not well correlated quantitatively with the increases in anti-BPDE formation. H.p.l.c. profiles of deoxynucleoside adducts from basal and 20:4-stimulated incubations were qualitatively identical. Far greater variability of metabolism was seen in human bronchus explants, but 20:4-dependent increases in anti-BPDE formation could be demonstrated in those tissues as well. Inhibition of this stimulation by indomethacin was either absent or incomplete. This variation in the effect of indomethacin was explained by the examination of the products of 20:4 metabolism by the two tissues. Hamster trachea produced almost exclusively PHS metabolites whereas human bronchus yielded predominantly products of lipoxygenases, enzymes insensitive to indomethacin. In conclusion, this study indicates that co-oxygenation of chemical carcinogens can occur in hamster and human tracheobronchial tissues. The concentration-dependence observed with BP-7,8-diol, however, suggests that this pathway is of minor importance in the activation of BP in these tissues.

UI MeSH Term Description Entries
D008297 Male Males
D011449 Prostaglandin Endoperoxides Precursors in the biosynthesis of prostaglandins and thromboxanes from arachidonic acid. They are physiologically active compounds, having effect on vascular and airway smooth muscles, platelet aggregation, etc. Endoperoxides, Prostaglandin
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011463 Prostaglandins H A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. The most frequently encountered member of this group is the prostaglandin H2.
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004101 Dihydroxydihydrobenzopyrenes Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity. Benzopyrene Dihydrodiols,Dihydrobenzopyrene Diols,Dihydrodiolbenzopyrenes,Dihydrodiols, Benzopyrene,Diols, Dihydrobenzopyrene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
May 1984, The Journal of biological chemistry,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
January 1982, Drug metabolism reviews,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
July 1982, Cancer research,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
November 1989, Carcinogenesis,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
January 1981, Chemico-biological interactions,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
August 1979, Cancer research,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
November 1978, Mutation research,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
March 1991, Carcinogenesis,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
December 1986, Carcinogenesis,
G A Reed, and R C Grafstrom, and R S Krauss, and H Autrup, and T E Eling
May 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!