Glycogen metabolism in psoriatic epidermis and in regenerating epidermis. 1984

C S Harmon, and P J Phizackerley

The observation that the glycogen content of epidermis from psoriatic lesions and from regenerating wound epithelium is increased has been confirmed by quantitative estimation. In epidermis from psoriatic lesions, although the proportion of glycogen synthase in the I form is only about 5% of the total and similar to control values, total glycogen synthase activity is increased approximately 4-fold and hence glycogen synthase I activity is increased to the same extent. In contrast, total phosphorylase activity is only slightly increased and, since the proportion of the enzyme in the a form is reduced, phosphorylase a activity is similar to control values. In epidermis from psoriatic lesions, the concentration of UDP-glucose is approximately doubled, and the concentrations of fructose 1,6-bisphosphate and of 6-phosphogluconate are increased approximately 5-fold. It is concluded that rates of glycogen synthesis, of glycolysis and of the pentose phosphate pathway are all enhanced in vivo and in consequence the rate of glucose uptake by psoriatic epidermis must be increased. In the non-involved epidermis of psoriatic patients the glycogen content is within normal limits, and although total glycogen synthase activity is increased the ratio of glycogen synthase I to phosphorylase a is maintained at normal levels by the appropriate phosphorylation of both enzymes. In regenerating wound epithelium in the pig, the changes in enzyme activity and in metabolite concentration closely resemble those found in epithelium from psoriatic lesions except that in wound epithelium the proportion of phosphorylase in the a form is increased relative to normal epithelium.

UI MeSH Term Description Entries
D011565 Psoriasis A common genetically determined, chronic, inflammatory skin disease characterized by rounded erythematous, dry, scaling patches. The lesions have a predilection for nails, scalp, genitalia, extensor surfaces, and the lumbosacral region. Accelerated epidermopoiesis is considered to be the fundamental pathologic feature in psoriasis. Palmoplantaris Pustulosis,Pustular Psoriasis of Palms and Soles,Pustulosis Palmaris et Plantaris,Pustulosis of Palms and Soles,Psoriases
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D006003 Glycogen
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012969 Sodium Fluoride A source of inorganic fluoride which is used topically to prevent dental caries. Fluoristat,Ossin,Zymafluor,Fluoride, Sodium,Fluorides, Sodium,Fluoristats,Ossins,Sodium Fluorides,Zymafluors

Related Publications

C S Harmon, and P J Phizackerley
January 1973, The British journal of dermatology,
C S Harmon, and P J Phizackerley
January 1979, Acta dermato-venereologica. Supplementum,
C S Harmon, and P J Phizackerley
November 1990, The Journal of investigative dermatology,
C S Harmon, and P J Phizackerley
September 1977, Nihon Hifuka Gakkai zasshi. The Japanese journal of dermatology,
C S Harmon, and P J Phizackerley
January 1972, Cancer research,
C S Harmon, and P J Phizackerley
January 1966, The Journal of investigative dermatology,
C S Harmon, and P J Phizackerley
October 1976, Annals of clinical research,
C S Harmon, and P J Phizackerley
September 1978, The British journal of dermatology,
C S Harmon, and P J Phizackerley
August 1978, Vestnik dermatologii i venerologii,
C S Harmon, and P J Phizackerley
January 1973, The British journal of dermatology,
Copied contents to your clipboard!