Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. 1984

U Kragh-Hansen, and M I Sheikh

The mechanism of renal transport of L- and D-serine by membrane vesicles prepared from either whole cortex, pars convoluta or pars recta of rabbit proximal tubule was studied by a rapid filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Transport studies carried out with different salt gradients and by employing various ionophores showed that uptake of both L- and D-serine by luminal membrane vesicles from whole cortex was mediated by an Na+-dependent and electrogenic transport process. Eadie-Hofstee analysis of experimental data, obtained under extravesicular greater than intravesicular NaCl gradients, revealed the existence of multiple transport systems for L-serine but only one system for the D-isomer. The value of KA (the concentration producing a half-maximal optical response) for the D-serine transport system was calculated to be approximately 30 mM. Luminal membrane vesicles from pars convoluta take up both L- and D-serine by a single and common transport system. KA values for L- and D-serine transport were calculated to be 3.7 and 30 mM, respectively. Luminal membrane vesicles from pars recta take up L-serine by means of two transport systems, one of high affinity (KA = 0.37 mM) and the other of low affinity (KA = 10 mM). By contrast, no D-serine transport by these membrane vesicles could be detected. Uptake of L-serine by basolateral membrane vesicles is Na+ independent and electroneutral. Filtration studies showed that the transport is saturable (Km = 25-30 mM) and is inhibited by the presence of L-phenylalanine (but not by D-serine), indicating carrier-mediated uptake of L-serine.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

U Kragh-Hansen, and M I Sheikh
September 1986, Biochimica et biophysica acta,
U Kragh-Hansen, and M I Sheikh
September 1989, Biochimica et biophysica acta,
U Kragh-Hansen, and M I Sheikh
July 1987, The American journal of physiology,
U Kragh-Hansen, and M I Sheikh
April 1986, Biochimica et biophysica acta,
U Kragh-Hansen, and M I Sheikh
December 1983, Archives internationales de physiologie et de biochimie,
U Kragh-Hansen, and M I Sheikh
March 1980, Biochimica et biophysica acta,
U Kragh-Hansen, and M I Sheikh
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
U Kragh-Hansen, and M I Sheikh
May 1984, The American journal of physiology,
Copied contents to your clipboard!