Na+ gradient-dependent Pi uptake in basolateral membrane vesicles from dog kidney. 1984

S J Schwab, and S Klahr, and M R Hammerman

To ascertain whether Na+ gradient-stimulated 32Pi uptake was demonstrable in renal basolateral membrane vesicles, we measured 32Pi uptake in basolateral membrane suspensions isolated from canine renal cortex and compared solute uptake in basolateral suspensions with that measured in brush border suspensions. Measurements revealed Na+ gradient-dependent 32Pi transport in basolateral preparations. D-[3H] Glucose uptakes in basolateral suspensions were not stimulated by the Na+ gradient in contrast to findings in brush border suspensions. Na+ gradient-dependent 32Pi transport in basolateral suspensions was electrogenic in contrast to that measured in brush border preparations. Unlike 32Pi uptake in brush border preparations, Na+ gradient-dependent 32Pi uptake in basolateral suspensions did not increase as extravesicular pH was increased from 6.5 to 7.5. Na+ gradient-dependent 32Pi uptake in basolateral membranes showed saturation over the range of [Pi] from 5 to 100 microM (apparent Km, 14 +/- 2 microM; apparent Vmax, 34 +/- 2 pmol Pi X mg protein-1 X 30s-1). Our findings are compatible with the presence of an electrogenic Na+-Pi cotransporter in the canine proximal tubular basolateral membrane.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Schwab, and S Klahr, and M R Hammerman
September 1985, The American journal of physiology,
S J Schwab, and S Klahr, and M R Hammerman
July 1988, Biochemical pharmacology,
S J Schwab, and S Klahr, and M R Hammerman
October 1983, The Journal of pharmacology and experimental therapeutics,
S J Schwab, and S Klahr, and M R Hammerman
March 1986, The American journal of physiology,
S J Schwab, and S Klahr, and M R Hammerman
May 1981, The Journal of membrane biology,
S J Schwab, and S Klahr, and M R Hammerman
September 1984, The Journal of biological chemistry,
S J Schwab, and S Klahr, and M R Hammerman
July 1989, The Journal of pharmacology and experimental therapeutics,
S J Schwab, and S Klahr, and M R Hammerman
September 1984, The Journal of physiology,
S J Schwab, and S Klahr, and M R Hammerman
June 1983, The American journal of physiology,
Copied contents to your clipboard!