GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine. 1984

H Kojima, and A Gorio, and D Janigro, and G Jonsson

The effect of exogenous GM1 ganglioside on selectively noradrenaline-denervated rat cerebral cortex was investigated by measuring the spatial distribution of endogenous noradrenaline levels and by fluorescence histochemical analysis. A local noradrenaline denervation was produced by intracortical infusion of the selective catecholamine neurotoxin 6-hydroxydopamine for 3 or 7 days. The neurotoxin infusion caused an almost complete noradrenaline denervation in a restricted area around the infusion point as reflected by an almost complete long-term disappearance of noradrenaline nerve terminals and reduction of noradrenaline levels. There was with time a slow recovery of the levels, most likely related to a spontaneous noradrenaline nerve terminal regeneration. Post-treatment for 1 week with GM1 had very small effects on the 6-hydroxydopamine-induced reduction of the noradrenaline levels, while pretreatment with GM1 for 3 days before the neurotoxin infusion and continuing the GM1 administration for another 7-14 days significantly enhanced noradrenaline recovery, as observed both bio- and histochemically. GM1 had no effect on the 6-hydroxydopamine-induced noradrenaline depletion acutely, indicating that GM1 does not interfere with the direct neurotoxic actions of 6-hydroxydopamine. The present results thus indicate that exogenous GM1 enhances regrowth of noradrenaline nerve terminals which may be due to a regrowth stimulatory effect (regeneration/collateral sprouting) and/or related to protective actions of GM1 against retrograde degeneration of noradrenaline axons following the neurotoxin-induced lesion.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Kojima, and A Gorio, and D Janigro, and G Jonsson
January 1988, The Kurume medical journal,
H Kojima, and A Gorio, and D Janigro, and G Jonsson
August 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
H Kojima, and A Gorio, and D Janigro, and G Jonsson
March 2011, Progress in neuro-psychopharmacology & biological psychiatry,
H Kojima, and A Gorio, and D Janigro, and G Jonsson
April 1971, Canadian journal of physiology and pharmacology,
H Kojima, and A Gorio, and D Janigro, and G Jonsson
March 1995, Neurochemistry international,
H Kojima, and A Gorio, and D Janigro, and G Jonsson
March 2010, Parkinson's disease,
Copied contents to your clipboard!