Effects of trialkyllead compounds on growth, respiration and ion transport in Escherichia coli K12. 1980

J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole

Triethyllead and tripropyllead cations affected growth, energy metabolism and ion transport in Escherichia coli K12. The tripropyllead compound was more liposoluble than the triethyl analogue and was also more effective in inhibiting cell growth and the oxygen uptake of both intact cells and membrane particles. Triethyllead acetate (5 microM) inhibited growth on non-fermentable carbon sources, such as glycerol and succinate, more markedly than on glucose. At higher concentrations, triethyllead caused significant inhibition of respiration rates of intact cells; the concentration giving 50% inhibition was 60 microM for glycerol-grown cells and 150 microM for glucose-grown cells. Oxidation of succinate by membrane particles was less sensitive to inhibition by the tripropyl- or triethyllead compounds than were the oxidations of DL-lactate or NADH. Triethyllead acetate [1.9 mumol (mg membrane protein)-1] inhibited the reduction by NADH of cytochromes; evidence for more than one site of inhibition in the respiratory chain was obtained. Membrane-bound ATPase activity was strongly inhibited by triethyllead acetate in the absence or presence of Cl-. The concentration of inhibitor giving 50% inhibition [0.02 mumol (mg membrane protein)-1] was about two orders of magnitude lower than that required for 50% inhibition of substrate oxidation rates in membranes. Triethyllead acetate (1 microM) induced swelling of spheroplasts in iso-osmotic solutions of either NH4Cl or NH4Br, presumably as a result of the mediation by the organolead compound of Cl-/OH- and Br-/OH- antiports across the cytoplasmic membrane. Similar exchanges of OH- for F-, NO3- or SO4(2)- or the uniport of H+ could not be demonstrated. Comparisons are drawn between the effects of trialkyllead compounds and those of the more widely studied trialkyltin compounds.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
April 1975, The Journal of biological chemistry,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
October 1997, Journal of pediatric gastroenterology and nutrition,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
September 1966, Biochimica et biophysica acta,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
April 1980, Journal of general microbiology,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
December 1975, The Biochemical journal,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
September 1982, Journal of general microbiology,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
December 1977, Biokhimiia (Moscow, Russia),
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
December 1976, Journal of cellular physiology,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
January 1979, Microbios,
J F Gibson, and S G Hadfield, and M N Hughes, and R K Poole
April 1978, The Journal of biological chemistry,
Copied contents to your clipboard!