Control of activity states of heart mitochondrial ATPase. Role of the proton-motive force and Ca2+. 1980

M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster

The ATPase complex of submitochondrial particles exhibits activity transitions that are controlled by the natural ATPase inhibitor (Gómez-Puyou, A., Tuena de Gómez-Puyou, M. and Ernster, L. (1979) Biochim. Biophys. Acta 547, 252-257). The ATPase of intact heart mitochondria also shows reversible activity transitions; the activation reaction is induced by the establishment of electrochemical gradients, whilst the inactivation reaction is driven by collapse of the gradient. In addition it has been observed that the influx of Ca2+ into the mitochondria induces a rapid inactivation of the ATPase; this could be due to the transient collapse of the membrane potential in addition to a favorable effect of Ca2+-ATP on the association of the ATPase inhibitor peptide to F1-ATPase. This action of Ca2+ may explain why mitochondria utilize respiratory energy for the transport of Ca2+ in preference to phosphorylation. It is concluded that the mitochondrial ATPase inhibitor protein may exert a fundamental regulatory function in the utilization of electrochemical gradients.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000968 Antimycin A An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1

Related Publications

M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
September 1986, Biochimica et biophysica acta,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
September 1989, The Journal of biological chemistry,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
February 2007, International journal of medical microbiology : IJMM,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
June 2021, IUBMB life,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
September 2017, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
January 2008, Nature,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
January 1983, Annual review of microbiology,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
December 2015, Proceedings of the National Academy of Sciences of the United States of America,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
November 1994, The Journal of experimental biology,
M T De Gómez-Puyou, and M Gavilanes, and A Gómez-Puyou, and L Ernster
August 1982, Journal of bacteriology,
Copied contents to your clipboard!