Energy-storage capacity of the mitochondrial proton-motive force. 1986

L Wojtczak, and A Zółkiewska, and J Duszyński

Resting state respiration of rat-liver mitochondria in the presence of oligomycin was rapidly blocked with cyanide and the dissipation of the membrane potential was followed with a tetraphenylphosphonium-sensitive electrode. From the rate of this dissipation and the electric capacitance of the mitochondrial membrane the energy stored in form of the membrane potential was calculated as about 7 microJ/mg protein. In the absence of oligomycin, dissipation of the membrane potential was slower, as it was partly compensated by proton ejection by mitochondrial ATPase hydrolyzing endogenous ATP. This allowed to calculate the total energy storage capacity of the proton-motive force. It amounted to the equivalence of 3.3 nmol ATP/mg protein or about 130 microJ/mg protein. The stoichiometry of proton-pumping ATPase utilizing endogenous ATP was estimated as three protons per molecule ATP.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L Wojtczak, and A Zółkiewska, and J Duszyński
September 1989, The Journal of biological chemistry,
L Wojtczak, and A Zółkiewska, and J Duszyński
March 1980, Biochimica et biophysica acta,
L Wojtczak, and A Zółkiewska, and J Duszyński
November 1994, The Journal of experimental biology,
L Wojtczak, and A Zółkiewska, and J Duszyński
August 2013, Nature structural & molecular biology,
L Wojtczak, and A Zółkiewska, and J Duszyński
December 2021, EMBO reports,
L Wojtczak, and A Zółkiewska, and J Duszyński
December 2015, Proceedings of the National Academy of Sciences of the United States of America,
L Wojtczak, and A Zółkiewska, and J Duszyński
January 1989, Journal of bacteriology,
L Wojtczak, and A Zółkiewska, and J Duszyński
November 2022, Biomacromolecules,
L Wojtczak, and A Zółkiewska, and J Duszyński
April 2024, EMBO reports,
L Wojtczak, and A Zółkiewska, and J Duszyński
October 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!