Structural and functional lability induced by diethyl ether on the sarcoplasmic reticulum membrane. 1981

P Kidd, and D Scales, and G Inesi

Structural and functional changes occurring in sarcoplasmic reticulum vesicles following exposure to low concentrations (5--7%, v/v) of diethyl ether in aqueous media, were studied by electron microscopy and by kinetic measurements of Ca2+ transport and ATPase activity. Electron microscopy of thin sectioned and freeze-fractured sarcoplasmic reticulum vesicles provided detailed resolution of Ca-ATPase amphiphilic molecules displaying 'lollipop' portions on the outer surface of the vesicle, and non-polar moieties penetrating the membrane's hydrophobic interior. This asymmetric disposition of ATPase molecules was disrupted in vesicles exposed to ether and then centrifuged and/or resuspended in aqueous media. Such vesicles had a tendency to undergo fragmentation, and the distribution of ATPase molecules was markedly altered. The continuous fuzzy layer of lollipops became discontinuous, and the intramembranous particles became randomly distributed over both the concave and the convex freeze-fracture membrane faces. Functionally, the vesicles lost their ability to accumulate calcium in the presence of ATP, although high rates of ATPase activity were maintained. Vesicles which were simply exposed to ether, without being subjected to centrifugation and/or homogenization, did not appear altered ultrastructurally, and retained their ability to accumulate calcium. In fact, the enzyme turnover and the maximal levels of calcium uptake were increased. It is concluded that diethyl ether interferes with lipid-lipid and protein-lipid interactions in the sarcoplasmic reticulum vesicle membrane, thereby facilitating molecular motions which may be a limiting factor in the transport mechanism. On the other hand, these weakened interactions permit structural denaturation and loss of the ability to maintain a transmembrane Ca2+ gradient when the vesicles are subjected to mechanical perturbations which are harmless in the absence of ether.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004986 Ether A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes. Diethyl Ether,Ether, Ethyl,Ethyl Ether,Ether, Diethyl
D005019 Ethyl Ethers Organic compounds having ethyl groups bound to an oxygen atom. Ethoxy Compounds,Compounds, Ethoxy,Ethers, Ethyl
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

P Kidd, and D Scales, and G Inesi
November 1973, Nature: New biology,
P Kidd, and D Scales, and G Inesi
November 1983, Biochemical pharmacology,
P Kidd, and D Scales, and G Inesi
February 1974, Annals of the New York Academy of Sciences,
P Kidd, and D Scales, and G Inesi
June 1994, Molecular and cellular biochemistry,
P Kidd, and D Scales, and G Inesi
July 1980, The Journal of biological chemistry,
P Kidd, and D Scales, and G Inesi
August 1985, Journal of bioenergetics and biomembranes,
P Kidd, and D Scales, and G Inesi
January 1992, Neirofiziologiia = Neurophysiology,
P Kidd, and D Scales, and G Inesi
October 1987, The Journal of biological chemistry,
P Kidd, and D Scales, and G Inesi
January 1974, Methods in enzymology,
P Kidd, and D Scales, and G Inesi
January 1986, Biophysical journal,
Copied contents to your clipboard!