[Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system]. 1982

S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ

It has been shown that the induction of earlier described system of potassium-dependent transport of hydrogen ions in mitochondria at low pH values of the incubation medium is inhibited by the inhibitors of mitochondria respiratory chain and ATPase. It has been found that antimycin and oligomycin suppress the efflux of potassium ions from mitochondria in the presence of succinic acid. The uncoupler (FCCP) turns the effect of ATPase inhibitors to the efflux of potassium ions and acceleration of mitochondria respiration under experimental conditions. At the same time TMPD removes the effect of antimycin on potassium ion efflux from uncoupled FCCP of mitochondria. The data obtained are explained in terms of the postulate that under experimental conditions along with the system of potassium-dependent ion transport there appears leakage of protons through the ATPase channel. A conclusion is made concerning the control of ion transport induction in mitochondria by the enzymes of oxidative phosphorylation system.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1982, Biofizika,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1985, Annual review of biochemistry,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1983, Annals of the New York Academy of Sciences,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
June 1970, Bulletin de la Societe de chimie biologique,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1968, Biofizika,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
March 1974, Bollettino della Societa italiana di biologia sperimentale,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
March 1984, Journal of theoretical biology,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1978, Methods in enzymology,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
October 1969, The Biochemical journal,
S A Novgorodov, and S F Dragunova, and L S Iaguzhinskiĭ
January 1983, Arzneimittel-Forschung,
Copied contents to your clipboard!