Central projections from cat suboccipital muscles: a study using transganglionic transport of horseradish peroxidase. 1984

D A Bakker, and F J Richmond, and V C Abrahams

Central projections of suboccipital muscle nerves were examined following exposure of cut peripheral nerves to the tracer horseradish peroxidase. Labelled fibers entered the C1 and C2 dorsal roots and accumulated in the dorsolateral part of the dorsal funiculus. Many labelled fibers entered the grey matter of C1 to C3 in ventrally directed bundles which passed medially to the base of the dorsal horn. No terminal labelling was apparent in superficial layers of the dorsal horn. However, labelled fibers ramified extensively throughout medial parts of the intermediate laminae, in and around the central cervical nucleus. Labelled fibers also projected toward the ventral horn. In cats subjected to ventral root section at the time of peripheral nerve exposure, a modest distribution of reaction product was observed deep in the ventral horn. In cats which did not undergo ventral root section, anterograde projections in the ventral horn were obscured by the simultaneous retrograde filling of motoneurons both in the ventromedial nucleus and on the medial and lateral borders of the gray matter. Labelled axons also coursed rostrally into the medulla where they formed a circumscribed bundle between the main cuneate nucleus and the spinal nucleus of V. Three consistent regions of HRP deposition could be identified at medullary levels. Dense accumulations of reaction product were present in circumscribed regions of the external cuneate nucleus (ECN) throughout its rostrocaudal extent. A second zone of dense labelling occurred in the intermediate nucleus of Cajal, where it appeared to form a continuing column rostral to the central cervical nucleus in C1-C3. Sparse labelling was restricted to a third zone in the ventrolateral part of the main cuneate nucleus.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000870 Anterior Horn Cells MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES. Anterior Horn Neurons,Neurons, Anterior Horn,Neurons, Ventral Horn,Ventral Horn Cells,Ventral Horn Neurons,Anterior Horn Cell,Anterior Horn Neuron,Cell, Anterior Horn,Cell, Ventral Horn,Cells, Anterior Horn,Cells, Ventral Horn,Neuron, Anterior Horn,Neuron, Ventral Horn,Ventral Horn Cell,Ventral Horn Neuron

Related Publications

D A Bakker, and F J Richmond, and V C Abrahams
June 1989, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
D A Bakker, and F J Richmond, and V C Abrahams
November 1984, The Journal of comparative neurology,
D A Bakker, and F J Richmond, and V C Abrahams
April 1979, Neuroscience letters,
D A Bakker, and F J Richmond, and V C Abrahams
March 1984, The Journal of comparative neurology,
D A Bakker, and F J Richmond, and V C Abrahams
January 1978, Acta anatomica,
Copied contents to your clipboard!