The central projections of tooth pulp afferent neurons in the rat as determined by the transganglionic transport of horseradish peroxidase. 1984

C F Marfurt, and D F Turner

Transganglionic transport of horseradish peroxidase (HRP) or horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) was used to map in detail the central projections of trigeminal primary afferent neurons that innervate the dental pulp organ of the rat. In each of ten animals, 0.5-2.0 microliters of enzyme solution was injected into the pulp chamber of the first maxillary molar tooth. Postmortem examination of the decalcified teeth in all cases showed that the HRP/HRP-WGA remained confined to the pulp chamber and pulp roots, with no spread of enzyme into periapical tissues. HRP-labeled tooth pulp afferent fibers projected to all four rostrocaudal subdivisions of the ipsilateral trigeminal brainstem nuclear complex (TBNC) and to the upper cervical spinal cord. The labeled terminal fields formed a column that stretched relatively uninterrupted from just caudal to the rostromedial tip of the trigeminal principal sensory nucleus to at least the C2 segment of the spinal cord. The density of the afferent projection varied markedly from one rostrocaudal level of the TBNC to the next but was heaviest in an area encompassing the caudal one-half of the principal sensory nucleus and the rostral two-thirds of pars oralis. Fibers projected only lightly to pars caudalis, where they terminated preferentially in laminae I, IIa, and the junctional zone between laminae IV and V. HRP-labeled terminals in C1 and C2 were located almost exclusively in laminae I. In the dorsoventral axis, the terminal fields in the TBNC were located in a surprisingly dorsal part of the complex, well within what has been shown by others to be largely an area of termination for mandibular division fibers. Most fibers ended in medial parts of the TBNC, with the exception of two modestly labeled terminal fields located in the lateral aspects of rostral pars oralis and rostral pars caudalis. No labeled fibers terminated in the contralateral TBNC or contralateral cervical spinal cord.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C F Marfurt, and D F Turner
June 1989, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
C F Marfurt, and D F Turner
January 1993, Somatosensory & motor research,
C F Marfurt, and D F Turner
April 1979, Neuroscience letters,
C F Marfurt, and D F Turner
September 1984, The Journal of comparative neurology,
C F Marfurt, and D F Turner
July 1983, Journal of the autonomic nervous system,
C F Marfurt, and D F Turner
December 1979, The Journal of comparative neurology,
Copied contents to your clipboard!