Functional roles and circuitry in an inhibitory pathway to feeding command neurones in Pleurobranchaea. 1984

J A London, and R Gillette

The paracerebral neurones (PCNs) of the brain of Pleurobranchaea californica serve a command role in the initiation of feeding behaviour (Gillette, Kovac & Davis, 1978). The PCNs are synaptically excited by food stimuli applied to the oral veil of hungry, naive animals. In food avoidance-conditioned animals, the PCNs are inhibited by a barrage of inhibitory postsynaptic potentials concomitant with the suppression of feeding (Davis & Gillette, 1978). In this paper, an interneuronal pathway is described which causes inhibition of the PCNs and potentially mediates the effects of learning. The inhibitory pathway consists of three serially connected interneurones. One population, designated the Interneurone 1s (Int-1s), monosynaptically inhibits the PCNs. A second population, the Interneurone 2s (Int-2s), excites the Int-1 population. They also excite other neurones of the brain including the metacerebral giant neurones. A third population, the Interneurone 3s (Int-3s), monosynaptically excites the Interneurone 2 population. Dual intracellular recordings and current injection show that ipsilateral members of the Int-2 population are electrically coupled via a nonrectifying connection. Contralateral members of the Int-2 population are excitatorily coupled via a polysynaptic pathway. The Int-1 population is phasically active during the rhythmic motor activity that underlies feeding. In the isolated nervous system Int-1 activity is phase-locked with rhythmic PCN activity; Int-1 activity occurs maximally at the end of a PCN burst, during the retraction phase of the cycle. Int-2 activity also occurs during the retraction phase. During actual feeding in the whole animal preparation, the Int-2s are also phasically active; maximal excitation occurs during buccal mass retraction and maximal inhibition during protraction and the bite. Stimulated activity in a single Int-2 can entirely suppress the rhythmic motor activity of the feeding network evoked by electrical stimulation of the stomatogastric nerve. The suppressant effects of Int-2 activity must be mediated widely within the feeding network because the rhythmic motor output so driven is not dependent on PCN spiking. Application of an appetitive chemosensory stimulus to whole and semi-intact animal preparations initiated feeding and elicited excitation of the Int-1 and Int-2 populations. Noxious chemosensory stimuli, such as a dilute soap solution or ethanol, elicited oral veil withdrawal and inhibition of the Int-2s by multiple inhibitory postsynaptic potentials.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012679 Sense Organs Specialized organs adapted for the reception of stimuli by the NERVOUS SYSTEM. Sensory System,Organ, Sense,Sense Organ,Sensory Systems,System, Sensory

Related Publications

J A London, and R Gillette
September 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J A London, and R Gillette
February 1978, Science (New York, N.Y.),
J A London, and R Gillette
January 1974, Journal of neurobiology,
J A London, and R Gillette
March 1976, Behavioral biology,
J A London, and R Gillette
February 1978, Science (New York, N.Y.),
Copied contents to your clipboard!