Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. I. Excitatory inputs. 1983

M P Kovac, and W J Davis, and E M Matera, and R P Croll

Neurons presynaptic to the phasic paracerebral feeding command interneurons (PCP's; Ref. 55) of Pleurobranchaea were located in the isolated central nervous system (CNS) and studied anatomically by lucifer yellow injection and physiologically by current injection and intracellular recording in normal and ion-substituted seawater during quiescence and fictive feeding. The present paper describes excitatory inputs to PCP's, while the accompanying paper (54) reports inhibitory inputs. Monosynaptic excitors (MSEs) are a group of at least three monopolar neurons per hemiganglion. Two have similar dendritic structures and functional effects. Each MSE monosynaptically excites the PCP's and fires action-potential bursts in phase with PCP bursts during fictive feeding. The class I electrotonic neuron (ETI) is a single, identified monopolar neuron per hemiganglion with a sparse dendritic arborization and no descending axon in the cerebrobuccal connective (CBC). The ETI is coupled with PCP's only by means of a non-rectifying electrical synapse. Paradoxically, ETI receives opposite synaptic inputs from PCP's and fires in antiphase with PCP's during fictive feeding. Class II electrotonic neurons (ETII's) are a group of at least two identified multipolar neurons per hemiganglion with indistinguishable dendritic architectures and similar but distinguishable functional effects. Each cell is coupled with PCP's by means of a nonrectifying electrical synapse. One of the ETII's also delivers graded, long-latency poly-synaptic chemical inputs to PCP's. ETII's have descending axons in the CBC, elicit fictive feeding when depolarized, and fire cyclically and in phase with PCP's during fictive feeding. Polysynaptic excitors (PSEs) are a group of at least two identified monopolar neurons per hemiganglion with similar elaborate dendritic fields and functional effects. Each cell excites PCP's by a long-latency, relatively nongraded polysynaptic pathway. PSEs also have descending axons in the ipsilateral CBC, elicit fictive feeding when depolarized, and fire in phase with PCP's during fictive feeding. PSEs and ETII's are here recognized as subclasses of neurons previously identified as paracerebral neurons. They are inhibited by the same neurons that supply recurrent inhibition to PCP's (47), share excitatory inputs with PCP's, and exhibit a similar "command" capacity. This study thus documents redundancy and functional specialization within a command system controlling a relatively complex rhythmic motor behavior.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

M P Kovac, and W J Davis, and E M Matera, and R P Croll
August 2003, Journal of neurophysiology,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
January 2017, Proceedings of the National Academy of Sciences of the United States of America,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
February 2020, Nature communications,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
January 2015, Frontiers in neural circuits,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
November 1984, The Journal of experimental biology,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
January 1999, Neuroscience,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
April 1977, Brain research,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
April 1999, The European journal of neuroscience,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
January 1982, Journal de physiologie,
M P Kovac, and W J Davis, and E M Matera, and R P Croll
February 2022, Science advances,
Copied contents to your clipboard!