Phosphorus-31 nuclear magnetic resonance of ethidium complexes with ribonucleic acid model systems and phenylalanine-accepting transfer ribonucleic acid. 1983

E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein

The temperature dependence of the 31P NMR spectra of the ethidium complexes with poly(A) X oligo(U) and the 31P spectra of phenylalanine tRNA (yeast) in various molar ratios of ethidium ion (Et) are presented. In the poly(A) X oligo(U) X Et complex, a new peak about 2.0 ppm downfield from the double-helix peak appears. We have assigned this peak to phosphates perturbed by ethidium. The chemical shift of this peak is consistent with the intercalation mode of binding and provides additional support for our hypothesis that 31P shifts are sensitive probes of phosphate ester conformations. The main effect of ethidium on the 31P spectra of tRNAPhe is the broadening of several of the scattered signals. These scattered signals are associated with phosphates involved in tertiary interactions. We propose that these broadened signals arise from phosphates near the Et binding site.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011063 Poly A-U A double-stranded polyribonucleotide comprising polyadenylic and polyuridylic acids. Polyadenylic-Polyuridylic Acid,Poly r(A-U),Poly(rA)-Poly(rU),Acid, Polyadenylic-Polyuridylic,Poly A U,Polyadenylic Polyuridylic Acid
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl

Related Publications

E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
January 1982, Methods in enzymology,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
March 1981, Biochemistry,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
January 1981, Biochemistry,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
September 1994, Biochimica et biophysica acta,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
March 1985, Biochemistry,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
January 1989, Methods in enzymology,
E M Goldfield, and B A Luxon, and V Bowie, and D G Gorenstein
October 1982, Biochemistry,
Copied contents to your clipboard!