Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons. 1981

P D Johnston, and A G Redfield

Results directed primarily toward spectral assignment and nuclear spin dynamics are described for yeast tRNAPhe in 0.1 M NaCl, pH 7. Magnesium titrations were performed. Changes in the spectrum occur for Mg2+/tRNA ratios of about 2 and above 10. Difference spectroscopy between 43 and 29 degrees C in zero Mg2+ concentration, together with prior identification of the GU4 acceptor stem base pair, indicates early acceptor melting and is used to identify acceptor resonances. Transport of spin energy (spin diffusion) is described in tRNA together with a summary of relevant experiments. A survey of nuclear Overhauser effects (NOE's) between imino and aromatic and amino protons is included, together with some recent conclusions based on methyl NOE's and experiments with tRNAs deuterated at the purine C8 position. Assignment of the imino NMR spectrum on the basis of these and previous data is reviewed and discussed in detail. Preliminary distance estimates based on the NOE for AU and GU4 base pairs are in reasonable agreement with the expected distances.

UI MeSH Term Description Entries
D007097 Imines Organic compounds containing a carbon-nitrogen double bond where a NITROGEN atom can be attached to HYDROGEN or an alkyl or aryl group. Imine
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D000588 Amines A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amine
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry

Related Publications

P D Johnston, and A G Redfield
November 1982, Biochemistry,
P D Johnston, and A G Redfield
January 1971, The Journal of biological chemistry,
P D Johnston, and A G Redfield
August 1970, Journal of molecular biology,
Copied contents to your clipboard!