Increased adrenal sensitivity to angiotensin II in low-renin essential hypertension. 1978

M Wisgerhof, and R D Brown

Studies were undertaken to determine if the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension is due to altered adrenal responsiveness to angiotensin II. The responsiveness of the adrenal glands to angiotensin II was determined by infusing graded doses of angiotensin II into normal subjects and into patients with essential hypertension and measuring changes in levels of plasma aldosterone in response to the infusion. To minimize the influence of endogenous angiotensin II and ACTH, supplemental sodium and dexamethasone were given before the infusions. Levels of plasma aldosterone and plasma renin activity were determined in normal subjects and in the same patients after the combined stimuli of furosemide and upright posture, a maneuver used to increase the level of endogenous angiotensin II. To determine if the changes in levels of plasma aldosterone during infusion of angiotensin II were due to alteration of the metabolic clearance of aldosterone, the metabolic clearance of aldosterone was measured before and during the infusion of angiotensin II. After sodium loading, dexamethasone treatment, and supine posture, levels of plasma aldosterone of normal subjects and patients with essential hypertension were suppressed equally. In response to the infusion of angiotensin II, the levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of normal subjects or of patients with normal-renin essential hypertension. After furosemide and upright posture, levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of patients with normal-renin essential hypertension, despite a blunted response in plasma renin activity of the patients with low-renin essential hypertension. Decreases in metabolic clearance of aldosterone during infusion of angiotensin II were similar in patients with normal-renin essential hypertension and in patients with low-renin essential hypertension and accounted for only a small fraction of the marked increase in levels of plasma aldosterone of patients with low-renin essential hypertension. It is concluded that patients with low-renin essential hypertension have increased adrenal sensitivity to angiotensin II. This increased sensitivity may explain the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011187 Posture The position or physical attitude of the body. Postures
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D005260 Female Females
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal

Related Publications

M Wisgerhof, and R D Brown
September 1999, Hypertension (Dallas, Tex. : 1979),
M Wisgerhof, and R D Brown
February 1979, The Journal of clinical endocrinology and metabolism,
M Wisgerhof, and R D Brown
December 1984, Klinische Wochenschrift,
M Wisgerhof, and R D Brown
November 1979, The Journal of clinical investigation,
M Wisgerhof, and R D Brown
July 1978, Clinical nuclear medicine,
M Wisgerhof, and R D Brown
January 1974, Transactions of the Association of American Physicians,
M Wisgerhof, and R D Brown
January 1982, Clinical and experimental hypertension. Part A, Theory and practice,
M Wisgerhof, and R D Brown
August 1975, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
M Wisgerhof, and R D Brown
June 1986, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!