Oral glucose augmentation of insulin secretion. Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. 1978

D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres

Gastric inhibitory polypeptide, or GIP, has been postulated as the major enteric hormonal mediator of insulin release. The release of immuno-reactive GIP (IR-GIP) after oral glucose and its role in insulin release was studied in normal men by the glucose clamp technique. In 24 subjects studied with the hyperglycemic clamp, blood glucose was maintained at 125 mg/dl above basal for 2 h via a primed-continuous IV glucose infusion coupled to a servo-controlled negative feedback system. 40 g glucose per m(2) surface area was ingested at 60 min, and the blood glucose was maintained at the steady-state hyperglycemic level. Plasma IR-GIP and insulin (IRI) levels were measured throughout the 2-h period. IR-GIP levels changed little when IV glucose alone was given; the mean basal value was 305+/-34 (SEM) pg/ml. After oral glucose, IR-GIP levels began to rise within 10 min and reached a peak within 40 min of 752+/-105 pg/ml. Plasma IRI responded initially to the square wave of hyperglycemia in the typical biphasic pattern. After oral glucose, plasma IRI levels rose strikingly above the elevated levels produced by hyperglycemia alone, reaching a peak of 170+/-15 muU/ml within 45 min. The time course of the rise in IR-GIP and IRI was nearly identical. To assess whether the maintenance of euglycemia would affect this process, the euglycemic clamp was employed in 11 subjects to maintain basal blood glucose levels during a similar 2-h study. A primed-continuous insulin infusion, with a constant rate of 120 mU/m(2) per min was given together with a servo-controlled glucose infusion. This resulted in hyper-insulinemia of approximately 300 muU/ml. Glucose was ingested by six subjects at 60 min. Plasma IR-GIP responded to oral glucose similarly to the effect seen in the hyperglycemic studies. No increase in endogenous insulin release was seen despite the increase in IR-GIP when euglycemia was maintained. However, in five of seven subjects given insulin whose blood glucose concentration rose by 20 mg/dl or more after oral glucose, there was an increase in plasma insulin concentration associated with the elevation in IR-GIP. Thus, the effect of glucose-released IR-GIP on insulin secretion is dependent upon the presence of some degree of hyper-glycemia and is not inhibited in the presence of marked hyperinsulinemia.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005768 Gastrointestinal Hormones HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs. Enteric Hormone,Enteric Hormones,Gastrointestinal Hormone,Intestinal Hormone,Intestinal Hormones,Hormone, Enteric,Hormone, Gastrointestinal,Hormone, Intestinal,Hormones, Enteric,Hormones, Gastrointestinal,Hormones, Intestinal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
February 1978, American journal of surgery,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
September 1981, Diabetologia,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
January 1981, Metabolism: clinical and experimental,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
January 1990, Life sciences,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
November 1982, Endocrinology,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
January 1993, Pancreas,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
January 1993, Transactions of the Association of American Physicians,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
August 1978, Diabetes,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
November 1973, The Journal of clinical endocrinology and metabolism,
D K Andersen, and D Elahi, and J C Brown, and J D Tobin, and R Andres
April 1992, Obstetrics and gynecology,
Copied contents to your clipboard!