Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). 1984

F Giraldez, and K T Ferreira

The regulation of cell chloride activity in frog skin was investigated using double barrelled Cl--microelectrodes to measure cell membrane potentials and chloride activity in the isolated frog epidermis. Experiments were done under short-circuit conditions, impaling cells from the serosal side. The basic electrophysiological parameters of the isolated skin were similar to those reported in the literature for whole preparations. Intracellular chloride activity was on average 21.9 mM and membrane potential was about 57 mV, implying that chloride was distributed away from its electrochemical equilibrium (i.e., concentrated inside the cells). Chloride activity decreased after removal of either Cl- or Na+ from the serosal bathing solution, with no change in membrane potential. The chloride permeability of the serosal membrane was calculated to be 2.6 X 10(-6) cm X s-1 which represents about 1/4 of the total conductance of the serosal membrane. We suggest that an electrically silent sodium-dependent uphill transport of chloride is present at the basolateral membrane of the frog skin, which accounts for the non-passive distribution of chloride.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012879 Skin Physiological Phenomena The functions of the skin in the human and animal body. It includes the pigmentation of the skin. Skin Physiological Processes,Skin Physiology,Physiology, Skin,Skin Physiological Concepts,Skin Physiological Phenomenon,Skin Physiological Process,Concept, Skin Physiological,Concepts, Skin Physiological,Phenomena, Skin Physiological,Phenomenas, Skin Physiological,Phenomenon, Skin Physiological,Phenomenons, Skin Physiological,Physiological Concept, Skin,Physiological Concepts, Skin,Physiological Phenomena, Skin,Physiological Phenomenas, Skin,Physiological Phenomenon, Skin,Physiological Phenomenons, Skin,Process, Skin Physiological,Processes, Skin Physiological,Skin Physiological Concept,Skin Physiological Phenomenas,Skin Physiological Phenomenons
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

F Giraldez, and K T Ferreira
February 1975, The Journal of physiology,
F Giraldez, and K T Ferreira
December 2012, Journal of proteome research,
F Giraldez, and K T Ferreira
January 1980, Archivum immunologiae et therapiae experimentalis,
F Giraldez, and K T Ferreira
January 1991, Zhurnal evoliutsionnoi biokhimii i fiziologii,
F Giraldez, and K T Ferreira
April 1963, Arkhiv anatomii, gistologii i embriologii,
F Giraldez, and K T Ferreira
June 1966, Journal of morphology,
F Giraldez, and K T Ferreira
January 1984, Immunogenetics,
F Giraldez, and K T Ferreira
August 1978, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!