The indusium griseum and anterior hippocampal continuation in the rat. 1983

J M Wyss, and K Sripanidkulchai

The morphology and connections of the indusium griseum (IG) and anterior hippocampal continuation (AHC) suggest that this cortex contains analogues to several portions of the hippocampal formation. Whereas the outer neuronal layer of this cortex is made up of cells which are similar in structure to the neurons of the granule cell layer of the dentate gyrus, the three successively deeper layers contain morphological analogues to the neurons of the dentate hilus, Ammon's horn, and the subiculum, respectively. The neurons within each of these four layers of the AHC and IG have afferent and efferent connections which are quite similar to the connections of their hippocampal counterparts. Thus, the granule cells of the IG and AHC receive laminar inputs from the entorhinal cortex, the IG-AHC itself, and the supramammillary region. Each of these three classes of inputs ends at successively more proximal positions on the dendritic tree of these granule cells. Other inputs to this region include those from the septal nuclei and the olfactory bulb. The deeper layers of the IG and AHC receive several inputs, including those from the thalamic and septal nuclei and the entorhinal cortex. The efferent cell bodies of the IG and AHC are segregated in such a way that the granule cells appear to give rise to only short connections, while the hilar cells project to the granule cells, the intermediate pyramidal neurons project to other portions of the IG and AHC and to the olfactory bulb, and the deep pyramidal neurons project to the diencephalon. These results demonstrate that the IG-AHC is a continuation of the hippocampal formation.

UI MeSH Term Description Entries
D008297 Male Males
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J M Wyss, and K Sripanidkulchai
May 2018, Neuroscience research,
J M Wyss, and K Sripanidkulchai
January 1982, Acta morphologica Academiae Scientiarum Hungaricae,
J M Wyss, and K Sripanidkulchai
January 1990, Neurobiology of aging,
J M Wyss, and K Sripanidkulchai
August 1992, Journal of the neurological sciences,
J M Wyss, and K Sripanidkulchai
January 2020, Frontiers in cell and developmental biology,
J M Wyss, and K Sripanidkulchai
January 1980, Neuropathology and applied neurobiology,
J M Wyss, and K Sripanidkulchai
January 2015, Cortex; a journal devoted to the study of the nervous system and behavior,
Copied contents to your clipboard!