Visual responses of inferior temporal neurons in awake rhesus monkey. 1983

B J Richmond, and R H Wurtz, and T Sato

We studied the responses to visual stimuli of neurons in area TE of the inferior temporal (IT) cortex in four awake monkeys (Macaca mulatta) trained to perform behavioral tasks. While the monkey looked at a fixation point in order to detect its dimming, another stimulus, such as a spot of light or a sine- or square-wave grating, usually produced only slight responses in inferior temporal neurons. However, the response to the stimulus was more vigorous if the task was changed so the fixation point blinked off before the stimulus came on while the monkey maintained its gaze. Responses to visual stimuli during this blink task were seen in 199 of 288 cells studied, and nearly all responded to a visual stimulus better during the blink task than during the task in which the fixation point remained on. Small spots of light usually produced consistent responses; we did not explore the response to complex stimuli or to objects. Latency of the visual response ranged from 70 to 220 ms. While the response of cells to a stimulus in the presence of the fixation point was limited to areas near the fovea, this apparently constricted visual receptive field expanded during the blink of the fixation point. In order to determine whether the increased response of the cell in the absence of the fixation point was due to a shift of attention from the fixation point to the visual stimulus, we required the monkey to respond to the dimming of this stimulus rather than to the dimming of the fixation point. We found that attention to the visual stimulus decreased the response of the cell during both the fixation and blink tasks. That is, the best response to the stimulus occurred in the blink task when attention to the stimulus was not required, while the poorest response occurred in the fixation task when attention to the stimulus was required. The reappearance of the fixation point during stimulus presentation in the blink task caused a transient time-locked suppression of response to the stimulus. This suggests that the reduction of response to the stimulus in the presence of the fixation point is caused by an interaction between the responses to the fixation point and the visual stimulus. To insure that we were recording from the same population of cells that had first been characterized by Gross, Rocha-Miranda, and Bender (14) in anesthetized, paralyzed monkeys, we recorded under those same conditions in two of our four monkeys.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010243 Paralysis A general term most often used to describe severe or complete loss of muscle strength due to motor system disease from the level of the cerebral cortex to the muscle fiber. This term may also occasionally refer to a loss of sensory function. (From Adams et al., Principles of Neurology, 6th ed, p45) Palsy,Plegia,Todd Paralysis,Todd's Paralysis,Palsies,Paralyses,Paralysis, Todd,Paralysis, Todd's,Plegias,Todds Paralysis
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D001767 Blinking Brief closing of the eyelids by involuntary normal periodic closing, as a protective measure, or by voluntary action. Orbicularis Oculi Reflex,Reflex, Blink,Reflex, Corneal,Reflex, Orbicularis Oculi,Winking,Blink Reflexes,Corneal Reflexes,Orbicularis Oculi Reflexes,Blink Reflex,Reflexes, Blink,Reflexes, Orbicularis Oculi
D003243 Consciousness Sense of awareness of self and of the environment. Consciousnesses
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions

Related Publications

B J Richmond, and R H Wurtz, and T Sato
January 2011, Physiological research,
B J Richmond, and R H Wurtz, and T Sato
September 1977, Journal of neurophysiology,
B J Richmond, and R H Wurtz, and T Sato
July 1978, Experimental brain research,
B J Richmond, and R H Wurtz, and T Sato
February 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B J Richmond, and R H Wurtz, and T Sato
September 1980, Investigative ophthalmology & visual science,
B J Richmond, and R H Wurtz, and T Sato
January 1989, Experimental brain research,
B J Richmond, and R H Wurtz, and T Sato
January 1985, Behavioural brain research,
B J Richmond, and R H Wurtz, and T Sato
December 1998, Journal of neurophysiology,
B J Richmond, and R H Wurtz, and T Sato
April 1995, Journal of neurophysiology,
Copied contents to your clipboard!