Responses of neurons in inferior temporal cortex during memory-guided visual search. 1998

L Chelazzi, and J Duncan, and E K Miller, and R Desimone
Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892-4415, USA.

Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80: 2918-2940, 1998. A typical scene will contain many different objects, few of which are relevant to behavior at any given moment. Thus attentional mechanisms are needed to select relevant objects for visual processing and control over behavior. We examined this role of attention in the inferior temporal cortex of macaque monkeys, using a visual search paradigm. While the monkey maintained fixation, a cue stimulus was presented at the center of gaze, followed by a blank delay period. After the delay, an array of two to five choice stimuli was presented extrafoveally, and the monkey was rewarded for detecting a target stimulus matching the cue. The behavioral response was a saccadic eye movement to the target in one version of the task and a lever release in another. The array was composed of one "good" stimulus (effective in driving the cell when presented alone) and one or more "poor" stimuli (ineffective in driving the cell when presented alone). Most cells showed higher delay activity after a good stimulus used as the cue than after a poor stimulus. The baseline activity of cells was also higher preceding a good cue, if the animal expected it to occur. This activity may depend on a top-down bias in favor of cells coding the relevant stimulus. When the choice array was presented, most cells showed suppressive interactions between the stimuli as well as strong attention effects. When the choice array was presented in the contralateral visual field, most cells initially responded the same, regardless of which stimulus was the target. However, within 150-200 ms of array onset, responses were determined by the target stimulus. If the target was the good stimulus, the response to the array became equal to the response to the good stimulus presented alone. If the target was a poor stimulus, the response approached the response to that stimulus presented alone. Thus the influence of the nontarget stimulus was eliminated. These effects occurred well in advance of the behavioral response. When the array was positioned with stimuli on opposite sides of the vertical meridian, the contralateral stimulus appeared to dominate the response, and this dominant effect could not be overcome by attention. Overall, the results support a "biased competition" model of attention, according to which 1) objects in the visual field compete for representation in the cortex, and 2) this competition is biased in favor of the behaviorally relevant object by virtue of "top-down" feedback from structures involved in working memory.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D005403 Fixation, Ocular Positioning and accommodation of eyes that allows the image to be brought into place on the FOVEA CENTRALIS of each eye. Focusing, Ocular,Ocular Fixation,Eye Gaze,Eye Gazes,Gaze, Eye,Gazes, Eye,Ocular Focusing

Related Publications

L Chelazzi, and J Duncan, and E K Miller, and R Desimone
January 1993, Annual review of neuroscience,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
April 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
January 2009, Frontiers in systems neuroscience,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
April 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
December 1983, Journal of neurophysiology,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
December 1987, Journal of neurophysiology,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
January 1987, Experimental brain research,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
January 2016, Visual cognition,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
November 2011, Brain research,
L Chelazzi, and J Duncan, and E K Miller, and R Desimone
March 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!