Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin. 1983

T E Schroeder, and S A Stricker

The cell surface and extracellular investments of oocytes of the starfish Pisaster ochraceus are analyzed by Nomarski differential interference contrast microscopy and by scanning electron microscopy. The investing coats include a thin sheet of follicle cells, a jelly coat, and a vitelline layer; their morphologies are described. Methods are outlined for systematically removing them without altering the behavior of the oocyte so that the cell surface can be examined directly. The topography of denuded oocytes changes dramatically when they are treated with the maturation-inducing hormone, 1-methyladenine. The major topographical change is the early and transient formation of prominent surface spikes. These structures arise due to the rapid, reversible polymerization of actin into stout bundles. Polymerization and subsequent depolymerization of cortical actin is monitored by epifluorescence microscopy of oocytes stained with NBD-phallacidin, a stain which is specific for polymerized actin. Based on scanning electron microscopy, spikes apparently utilize preexisting plasma membrane of microvilli, and plasma membrane is apparently lost when spikes collapse. Long after microvilli are eliminated due to spike formation, the number of microvilli is somewhat restored, especially around the animal pole where the polar body forms. A chronology of events observed during oocyte maturation is discussed with reference to the possible mechanisms and implications of polymerization and depolymerization of cortical actin.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin

Related Publications

T E Schroeder, and S A Stricker
July 1996, Developmental biology,
T E Schroeder, and S A Stricker
August 2008, Developmental biology,
T E Schroeder, and S A Stricker
May 1972, Nature: New biology,
T E Schroeder, and S A Stricker
January 2007, Cell structure and function,
T E Schroeder, and S A Stricker
December 1972, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!