Kinetics of cholesterol and phospholipid exchange between Mycoplasma gallisepticum cells and lipid vesicles. Alterations in membrane cholesterol and protein content. 1984

S Clejan, and R Bittman

The kinetics of exchange of radiolabeled cholesterol and phospholipids between intact Mycoplasma gallisepticum cells and unilamellar lipid vesicles were investigated over a wide range of cholesterol/phospholipid molar ratio. The change in cholesterol/phospholipid molar ratio was achieved by adapting the sterol-requiring M. gallisepticum to grow in cholesterol-poor media, providing cells with decreased unesterified cholesterol content. At least 90% of the cholesterol molecules in unsealed M. gallisepticum membranes underwent exchange at 37 degrees C as a single kinetic pool in the presence of albumin (2%, w/v). However, we observed biphasic exchange kinetics with intact cells, indicating that cholesterol translocation from the inner to outer monolayers was rate-limiting in the exchange process. Approximately 50% of the cholesterol molecules were localized in each kinetic pool, independent of the cholesterol/phospholipid molar ratio in the cells and vesicles. A striking change in the kinetic parameters for cholesterol exchange occurred between 20 and 26 mol % cholesterol; for example, when the cholesterol/phospholipid molar ratio was decreased from 0.36 to 0.25, the half-time for equilibration of the two cholesterol pools at 37 degrees C decreased from 4.6 +/- 0.5 to 2.5 +/- 0.1 h. Phospholipid exchange rates were also enhanced on decreasing the membrane cholesterol content. The ability of cholesterol to modulate its own exchange rate, as well as that of phospholipids, is suggested to arise from the sterol's ability to regulate membrane lipid order. Extensive chemical modification of the membrane surface by cross-linking of some of the protein constituents with 1,4-phenylenedimaleimide decreased the cholesterol exchange rate. Depletion of membrane proteins by treatment of growing cultures with chloramphenicol increased the cholesterol exchange rate, possibly because of removal of some of the protein mass that may impede lipid translocation. The observations that phospholipid exchange was one order of magnitude slower than cholesterol exchange and that dimethyl sulfoxide, potassium thiocyanate, and potassium salicylate enhanced the cholesterol exchange rate are consistent with a mechanism involving lipid exchange by diffusion through the aqueous phase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009174 Mycoplasma A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS. Eperythrozoon,Haemobartonella,Mycoplasma putrefaciens,PPLO,Pleuropneumonia-Like Organisms,Pleuropneumonia Like Organisms
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl

Related Publications

Copied contents to your clipboard!