Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex. 1984

T M McKenna, and A R Light, and B L Whitsel

High-impedance micropipettes are used to record (both extra- and intracellularly) the electrical activity of neural elements located 550 micron or less from the pial surface of cerebral cortical areas 3a, 3b, 1, and 2 in unanesthetized cats. These elements are designated as "upper-layer SI units" and most frequently are sampled within the arm and forelimb digit sectors of areas 3b and 1. Mechanical stimulation of the skin is employed to determine the receptive field (RF) and response properties of the upper-layer units sampled. Single-shock electrical stimulation of the skin is used to obtain estimates of the minimal latency for eliciting spike discharge. Intracellular iontophoretic injection of horseradish peroxidase (HRP) is used to determine the laminar locations of the somata of the neural elements from which recordings are obtained. The receptive field (RF) and response properties of most upper-layer units sampled in areas 3b and 1 differ substantially from those of units recorded at depths greater than 550 micron from the pial surface in the same cortical fields. The members of one group of upper-layer area 3b and 1 units (U units) respond best to infrequently repeated (typically less than 0.5/s), slowly moving (1-5 cm/s) tactile stimuli. For the same units, repetitive application of slow-moving tactile stimuli to the RF typically leads to an enhancement of responsiveness accompanied by an elevation of spontaneous activity. In contrast, repetitive stimuli delivered at high velocity and at short interstimulus intervals lead to a decrease in unit responsiveness and to an absence of spontaneous activity. The members of a second group of upper-layer units (R units) respond best to moving stimuli delivered at higher velocities (5-20 cm/s), respond reliably at stimulus repetition rates well in excess of 0.5/s, and do not exhibit pronounced changes in responsiveness to repeated stimulation. The RFs of most upper-layer units (both R and U units) involve restricted regions on the contralateral upper limb, but the RFs of U units have poorly defined borders. In addition, the distribution of sensitivity within the RF of at least some U units is nonuniform and, frequently, discontinuous. Contralateral as well as ipsilateral body regions are included within the RFs for 12% of the upper-layer neurons sampled; the remainder (8%) have RFs restricted to the contralateral body.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008723 Methohexital An intravenous anesthetic with a short duration of action that may be used for induction of anesthesia. Methohexitone,Brevimytal Natrium,Brevital,Brietal,Brietal-Sodium,Methohexital Sodium,Methohexital, Monosodium Salt,Brietal Sodium,Monosodium Salt Methohexital,Natrium, Brevimytal,Sodium, Methohexital
D009609 Nitrous Oxide Nitrogen oxide (N2O). A colorless, odorless gas that is used as an anesthetic and analgesic. High concentrations cause a narcotic effect and may replace oxygen, causing death by asphyxia. It is also used as a food aerosol in the preparation of whipping cream. Laughing Gas,Nitrogen Protoxide,Gas, Laughing,Oxide, Nitrous
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses

Related Publications

T M McKenna, and A R Light, and B L Whitsel
July 1978, Journal of neurophysiology,
T M McKenna, and A R Light, and B L Whitsel
June 1986, Journal of neurophysiology,
T M McKenna, and A R Light, and B L Whitsel
January 1979, Vision research,
T M McKenna, and A R Light, and B L Whitsel
January 1981, Experimental brain research,
T M McKenna, and A R Light, and B L Whitsel
May 1976, Journal of neurophysiology,
T M McKenna, and A R Light, and B L Whitsel
January 1988, Acta neurobiologiae experimentalis,
T M McKenna, and A R Light, and B L Whitsel
December 1991, The Journal of comparative neurology,
T M McKenna, and A R Light, and B L Whitsel
April 1990, Brain research. Developmental brain research,
T M McKenna, and A R Light, and B L Whitsel
August 1981, Journal of neurophysiology,
Copied contents to your clipboard!