Receptive-field properties of neurons in different laminae of visual cortex of the cat. 1978

A G Leventhal, and H V Hirsch

1. Receptive-field properties of neurons in the different layers of the visual cortex of normal adult cats were analyzed quantitatively. Neurons were classified into one of two groups: 1) S-cells, which have discrete on- and/or off-regions in their receptive fields and possess inhibitory side bands; 2) C-cells, which do not have discrete on- and off-regions in their receptive fields but display an on-off response to flashing stimuli. Neurons of this type rarely display side-band inhibition. 2. As a group, S-cells display lower relative degrees of binocularity and are more selective for stimulus orientation than C-cells. In addition, within a given lamina the S-cells have smaller receptive fields, lower cutoff velocities, lower peak responses to visual stimulation, and lower spontaneous activity than do the C-cells. 3. S-cells in all layers of the cortex display similar orientation sensitivities, mean spontaneous discharge rates, peak response to visual stimulation, and degrees of binocularity. 4. Many of the receptive-field properties of cortical cells vary with laminar location. Receptive-field sizes and cutoff velocities of S-cells and of C-cells are greater in layers V and VI than in layers II-IV. For S-cells, preferred velocities are also greater in layers V and VI than in layers II-IV. Furthermore, C-cells in layers V and VI display high mean spontaneous discharge rates, weak orientation preferences, high relative degrees of binocularity, and higher peak responses to visual stimulation when compared to C-cells in layers II and III. 5. The receptive-field properties of cells in layers V-VI of the striate cortex suggest that most neurons that have their somata in these laminae receive afferents from LGNd Y-cells. Hence, our results suggest that afferents from LGNd Y-cells may play a major part in the cortical control of subcortical visual functions.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009799 Ocular Physiological Phenomena Processes and properties of the EYE as a whole or of any of its parts. Ocular Physiologic Processes,Ocular Physiological Processes,Ocular Physiology,Eye Physiology,Ocular Physiologic Process,Ocular Physiological Concepts,Ocular Physiological Phenomenon,Ocular Physiological Process,Physiology of the Eye,Physiology, Ocular,Visual Physiology,Concept, Ocular Physiological,Concepts, Ocular Physiological,Ocular Physiological Concept,Phenomena, Ocular Physiological,Phenomenon, Ocular Physiological,Physiologic Process, Ocular,Physiologic Processes, Ocular,Physiological Concept, Ocular,Physiological Concepts, Ocular,Physiological Process, Ocular,Physiological Processes, Ocular,Physiology, Eye,Physiology, Visual,Process, Ocular Physiologic,Process, Ocular Physiological,Processes, Ocular Physiologic,Processes, Ocular Physiological
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

A G Leventhal, and H V Hirsch
January 1979, Vision research,
A G Leventhal, and H V Hirsch
May 1984, Journal of neurophysiology,
A G Leventhal, and H V Hirsch
January 1981, Experimental brain research,
A G Leventhal, and H V Hirsch
October 1977, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
A G Leventhal, and H V Hirsch
April 1990, Brain research. Developmental brain research,
A G Leventhal, and H V Hirsch
December 1981, Neuroscience letters,
A G Leventhal, and H V Hirsch
July 1999, Journal of neurophysiology,
A G Leventhal, and H V Hirsch
June 1986, Journal of neurophysiology,
Copied contents to your clipboard!