Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. 1984

K L Grasse, and M S Cynader, and R M Douglas

The response properties of cells in the lateral (LTN) and dorsal (DTN) terminal nuclei of the accessory optic system (AOS) were examined in 14 cats which underwent unilateral visual cortex ablation. Following decortication, single units in the LTN and DTN no longer showed the high degree of binocular convergence characteristic of the intact animal, but instead LTN and DTN units became almost completely dominated by the contralateral eye. In addition, responsivity of LTN and DTN cells to high stimulus velocities was abolished by removal of cortical input. This decrement in high velocity response was observed in both the excitatory and the inhibitory components of the velocity response profile. While the incidence of direction selective neurons in both the LTN or the DTN was not affected by decortication, the distribution of preferred and nonpreferred directions was dramatically altered in the LTN, and to a lesser extent in the DTN. In the LTN, there was a severe reduction in the number of cells which displayed maximal excitation for upward stimulus motion. Instead, most LTN units in the decorticate cat preferred downward directed stimulus motion. In the DTN, most units still preferred horizontal stimulus motion as in the intact animal, but the overall distribution of preferred directions displayed a clear downward vertical vector component. In other respects, such as receptive field size and position in visual space, on/off responses, and resting discharge rate, LTN and DTN units appeared unaffected by cortical lesions. These experiments demonstrate that the cortical input to the LTN and DTN plays a highly significant role in the formation of response properties of cells located in these nuclei. The results presented in this report indicate that the visual cortex is a major source of ipsilateral eye input, high velocity responses, and upward direction selectivity for the AOS units examined in these experiments.

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D014726 Vestibular Nuclei The four cellular masses in the floor of the fourth ventricle giving rise to a widely dispersed special sensory system. Included is the superior, medial, inferior, and LATERAL VESTIBULAR NUCLEUS. (From Dorland, 27th ed) Schwalbe Nucleus,Vestibular Nucleus, Medial,Schwalbe's Nucleus,Medial Vestibular Nucleus,Nuclei, Vestibular,Nucleus, Medial Vestibular,Nucleus, Schwalbe,Nucleus, Schwalbe's,Schwalbes Nucleus

Related Publications

K L Grasse, and M S Cynader, and R M Douglas
April 2004, Neuroreport,
K L Grasse, and M S Cynader, and R M Douglas
July 1967, The Journal of comparative neurology,
K L Grasse, and M S Cynader, and R M Douglas
December 1988, Journal of neurophysiology,
K L Grasse, and M S Cynader, and R M Douglas
June 1982, Brain research,
K L Grasse, and M S Cynader, and R M Douglas
June 1989, Journal of neurophysiology,
K L Grasse, and M S Cynader, and R M Douglas
September 1982, The Journal of comparative neurology,
K L Grasse, and M S Cynader, and R M Douglas
January 1976, Neuroendocrinology,
Copied contents to your clipboard!