A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies. 1984

B L Blitzer, and C B Donovan

Basolateral plasma membrane vesicles were prepared from rat liver by a new technique using self-generating Percoll gradients. The method is rapid (total spin time of 2.5 h) and protein yields were high (0.64 mg/g of liver). Transmission electron microscopy studies and measurements of marker enzyme activities indicated that the preparation was highly enriched in basolateral membranes and substantially free of contamination by canalicular membranes or subcellular organelles. High total recoveries for protein yield and marker enzyme activities during the fractionation procedure indicated that enzymatic activity was neither lost (inactivation) nor increased (activation). Thus, the pattern of marker enzyme activities found in the membrane preparation truly reflected substantial enrichment in membranes from the basolateral surface. Analysis of freeze-fracture electron micrographs suggested that approximately 75% of the vesicles were oriented "right-side-out." In order to assess the functional properties of the vesicles, the uptake of [3H]taurocholate was studied. In the presence of a Na+ gradient, taurocholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than that at equilibrium ("overshoot"). In the absence of a gradient but in the presence of equimolar Na+ inside and outside of the vesicle, taurocholate uptake was faster than in the absence of Na+. These findings support a direct co-transport mechanism for the uptake of taurocholate and Na+. Kinetic studies demonstrated that Na+-dependent taurocholate uptake was saturable with a Km of 36.5 microM and a Vmax of 5.36 nmol mg-1 protein min-1. The high yield, enzymatic profile and retention of transport properties suggest that this membrane preparation is well suited for studies of basolateral transport.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B L Blitzer, and C B Donovan
June 1992, The Journal of membrane biology,
B L Blitzer, and C B Donovan
September 1992, Gastroenterology,
B L Blitzer, and C B Donovan
July 1996, Hepatology (Baltimore, Md.),
B L Blitzer, and C B Donovan
June 1985, The American journal of physiology,
B L Blitzer, and C B Donovan
April 1980, European journal of biochemistry,
B L Blitzer, and C B Donovan
October 1992, Archives of biochemistry and biophysics,
B L Blitzer, and C B Donovan
June 1990, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!