Axonal and dendritic development of substantia gelatinosa neurons in the lumbosacral spinal cord of the rat. 1984

H R Bicknell, and J A Beal

In the present study, developing neurons of the substantia gelatinosa (SG) are examined at short interval sequential stages from 15 days of gestation through 20 days postpartum. Rapid Golgi preparations are utilized to examine axonal and dendritic development and toluidine blue preparations are employed to study the overall growth pattern of SG cells by measuring changes in mean cell body area. Results show that there are two maturation periods, which involve two separate groups of SG neurons. The sequence and pattern of development for each group is different. The first period occurs prenatally and involves the axonal and dendritic development of presumptive projection and propriospinal neurons. In classical terminology, these cells can be classified as limiting, large and small central, and transverse cells. These neurons have axons that enter the white matter and their dendritic arbors develop through a relatively simple process of elongation and branching. The second maturation period occurs postnatally and involves the development of presumptive nonprojection intrinsic neurons that have axons which remain within the gray matter. These neurons are identified as islet, stalk, inverted stalklike, and vertical cells. Unlike projection or propriopinal neurons, the intrinsic nonprojection neurons sprout numerous short, beaded dendrites that radiate from the cell body in a starlike fashion. Starshaped cells undergo a metamorphosis involving a rearrangement of dendrites along adult dendritic patterns. Measurements taken from toluidine blue preparations indicate that the nonprojection intrinsic population makes up the greatest percentage of SG neurons, as evidenced by a marked increase in the size of the average SG nerve cell during the second maturation period.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013376 Substantia Gelatinosa Gelatinous-appearing material in the dorsal horn of the spinal cord, consisting chiefly of Golgi type II neurons and some larger nerve cells. Lamina 2,Lamina II,Substantia Gelatinosa of Rolando,Gelatinosa, Substantia,Gelatinosas, Substantia,Rolando Substantia Gelatinosa,Substantia Gelatinosas

Related Publications

H R Bicknell, and J A Beal
January 1990, Experimental brain research,
H R Bicknell, and J A Beal
January 2010, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
H R Bicknell, and J A Beal
November 2003, British journal of pharmacology,
H R Bicknell, and J A Beal
June 2008, The European journal of neuroscience,
H R Bicknell, and J A Beal
July 1965, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
H R Bicknell, and J A Beal
January 2009, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
Copied contents to your clipboard!