Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. 1978

R S Kass, and R W Tsien, and R Weingart

1. Voltage clamp experiements studied the ionic basis of the strophathidin-induced transient inward current (TI) in cardiac Purkinje fibres. 2. The reversal potential of TI (Erev) was determined in the presence of various bathing solutions. Erev averaged --5 m V in the standard modified Tyrode solution (Kass, Lederer, Tsien & Weingart, 1978). Erev was displaced toward more negative potentials when the external Na concentration (NaO) was reduced by replacement of NaCl with Tris Cl, choline Cl or sucrose. 3. A sudden reduction of NaO evoked a temporary increase in TI, followed after a few minutes by a sustained diminution. The initial increase was closely paralleled by an enhanced aftercontraction and could be explained by an indirect effect of NaO on internal Ca. The subsequent fall in TI amplitude could be accounted for by the reduced driving force, E--Erev. 4. Erev was not significantly changed by replacing extracellular Cl with methyl-sulphate, or by limited variations in external Ca (2.7--16.2 mM) or external K (1--8 MM). 5. These results are consistent with an increase in membrane permeability to Na and perhaps K. 6. TI was not directly affected by TTX, which blocks excitatory Na channels, or by Cs, which inhibits inwardly rectifying K channels. TI may be distinguished from the slow inward current by its kinetic, pharmacological and ionic properties. 7. TI might be carried by a pre-existing ionic pathway such as the 'leak' channel which provides inward current underlying normal pace-maker depolarization. Another possibility is that TI reflects Ca extrusion by an electrogenic Ca--Na exchange.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R S Kass, and R W Tsien, and R Weingart
October 1992, The Journal of physiology,
R S Kass, and R W Tsien, and R Weingart
October 1996, Journal of molecular and cellular cardiology,
R S Kass, and R W Tsien, and R Weingart
December 1976, The Journal of physiology,
R S Kass, and R W Tsien, and R Weingart
September 1985, Cardiovascular research,
R S Kass, and R W Tsien, and R Weingart
February 1979, The Journal of physiology,
R S Kass, and R W Tsien, and R Weingart
February 1980, The Journal of physiology,
R S Kass, and R W Tsien, and R Weingart
January 1988, Basic research in cardiology,
R S Kass, and R W Tsien, and R Weingart
January 1980, Proceedings of the Western Pharmacology Society,
Copied contents to your clipboard!