Carbon dioxide, membrane potential and intracellular potassium activity in frog skeletal muscle. 1980

F Huguenin, and W Reber, and T Zeuthen

1. The membrane potential of isolated frog muscle fibres has been measured in absence and in presence of CO2, at constant external pH. 2. At a normal external Cl concentration, CO2 (PCO2 = 97 mmHg; pH = 7.0) applied for 10 min caused a highly variable depolarization, the average potential change being 8 mV after 5 min. The effect was reversible 3. In Cl-free solutions, CO2 (PCO2 = 97 mmHg; pH = 7.0) caused a biphasic depolarization of 20 mV after 5 min. The effect was fully reversible on CO2 removal. 4. The same effect appeared at a lower partial pressure (PCO2 = 38 mmHg; pH 7.3) in the presence of tetrodotoxin (10(-7) M). 5. In order to investigate the cause of the CO2-induced depolarization, membrane potential and intracellular K activity (ai/K,)( of surface muscle fibres were measured with voltage and ion-sensitive micro-electrodes. 6. At a normal external Cl concentration, CO2(PCO2 approximately equal to 97 mmHg; pH = 7.0) decreased ai/K by 5 mM after 5 min. 7. The same effect appeared at low external Cl concentration (11 mM). 8. At high partial pressure (PCO2 approximately equal to 588 mmHg; pH = 6.8), CO2 reduced ai/K by 19 mM in 10 min. 9. In long-term experiments performed over 4 h with a normal external Cl concentration, CO2 (PCO2 approximately equal to 97 mmHg; pH 5.8 or 7) changed practically neither membrane potential, nor ai/K. 10. It is concluded that increasing the PCO2 when keeping the external pH constant causes an early depolarization of muscle. This effect is particularly marked in the absence of chloride. It can be explained partly, in surface muscle fibres, by a decrease of the intracellular K activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

F Huguenin, and W Reber, and T Zeuthen
February 1979, The Journal of physiology,
F Huguenin, and W Reber, and T Zeuthen
February 1982, Respiration physiology,
F Huguenin, and W Reber, and T Zeuthen
January 1982, Pflugers Archiv : European journal of physiology,
F Huguenin, and W Reber, and T Zeuthen
January 1981, The Journal of physiology,
F Huguenin, and W Reber, and T Zeuthen
December 1973, The Journal of clinical investigation,
F Huguenin, and W Reber, and T Zeuthen
April 1960, The Journal of physiology,
F Huguenin, and W Reber, and T Zeuthen
June 1960, Journal of cellular and comparative physiology,
F Huguenin, and W Reber, and T Zeuthen
June 1986, Journal of muscle research and cell motility,
F Huguenin, and W Reber, and T Zeuthen
January 1965, Tsitologiia,
Copied contents to your clipboard!