Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. 1981

C A Leech, and P R Stanfield

1. Experiments were carried out using a voltage-clamp technique to investigate the dependence of inward rectification on membrane potential and on the equilibrium potential for K+, changed either by changing [K]o or changing [K]i. 2. The relationship between gK, the potassium chord conductance, and membrane potential depended on membrane potential and [K]o, but not on [K]i. 3. Under hyperpolarization, K currents increased with time, but instantaneous current-voltage relations also showed inward rectification. The time constants for activation fell with hyperpolarization, e -fold for an 18 mV change in membrane potential. 4. The time constants for activation depended on [K]o but not on [K]i. 5. Under depolarization, the activation of K currents was partly reversed, but between activation and membrane potential, determined from two-pulse experiments, also appeared to depend on [K]o but not on [K]i. 5. Under depolarization, the activation of K currents was partly reversed, but between activation and membrane potential, determined from two-pulse experiments, also appeared to depend on [K]o but not on [K]i. 6. The rate of activation of K currents under hyperpolarization had a Q10 of 2.64 +/- 0.08 (n = 5). Currents, measured per unit length, increased with temperature, with a Q10 of 1.66 +/- 0.11 (n = 5).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C A Leech, and P R Stanfield
January 1971, Pflugers Archiv : European journal of physiology,
C A Leech, and P R Stanfield
March 2015, The Journal of physiology,
C A Leech, and P R Stanfield
April 1977, Pflugers Archiv : European journal of physiology,
C A Leech, and P R Stanfield
March 1984, The Journal of physiology,
C A Leech, and P R Stanfield
August 1985, Journal of muscle research and cell motility,
C A Leech, and P R Stanfield
October 1981, Biophysical journal,
C A Leech, and P R Stanfield
June 1980, The Journal of physiology,
Copied contents to your clipboard!