Somatic rearrangements forming active immunoglobulin mu genes in B and T lymphoid cell lines. 1980

S Cory, and J M Adams, and D J Kemp

We have cloned an active gene for an immunoglobulin mu heavy (H) chain, bearing the variable (VH), joining (JH), and constant (C mu) sequences expressed in the IgM-secreting mouse plasmacytoma HPC-76. The mu gene was formed by somatic recombination between a VH gene and one of several JH genes, which are located about 7.7 kilobase pairs from the C mu gene in embryo DNA. The JH-C mu intervening sequence has suffered a deletion of about 2.7 kilobase pairs in HPC-76. Because the delection encompasses sequences required to switch an expressed VH-JH gene from C mu to another CH gene, it may represent a mechanism for "freezing" a lymphocyte clone at the stage of IgM expression. For the second (inactive) C mu allele in HPC-76, the entire joining and switch regions have been deleted; functional inactivation of one allele may thus represent one mechanism by which a lymphocyte clone restricts expression to a single allele (allelic exclusion). Probes generated from the cloned mu gene allowed examination of the JH locus in B, Abelson "pre-B," and T lymphoma cell lines and a myeloid line, all of which cotain RNA species bearing C mu sequences. The B and pre-B lines exhibited recombination within both alleles of the JH locus, suggesting that both alleles may be expressed in some cells. The absence of the JH gene 5' to the recombination sites favors a deletion mechanism for VH-JH joining. Recombination within the JH locus was also detected in two out of four T lymphoma lines, but not in the myeloid line. This indicates that the mechanism by which B cells generate immunoglobulin diversity is operational in some T cells. Lines that synthesize mu RNA without JH rearrangement may have activated the C mu gene directly or have undergone recombination at a more distant locus.

UI MeSH Term Description Entries
D007127 Immunoglobulin Constant Regions The domains of the immunoglobulin molecules that are invariable in their amino acid sequence within any class or subclass of immunoglobulin. They confer biological as well as structural functions to immunoglobulins. One each on both the light chains and the heavy chains comprises the C-terminus half of the IMMUNOGLOBULIN FAB FRAGMENT and two or three of them make up the rest of the heavy chains (all of the IMMUNOGLOBULIN FC FRAGMENT) Ig Constant Regions,Immunoglobulin Constant Region,Constant Region, Ig,Constant Region, Immunoglobulin,Constant Regions, Ig,Constant Regions, Immunoglobulin,Regions, Ig Constant
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007148 Immunoglobulin mu-Chains The class of heavy chains found in IMMUNOGLOBULIN M. They have a molecular weight of approximately 72 kDa and they contain about 57 amino acid residues arranged in five domains and have more oligosaccharide branches and a higher carbohydrate content than the heavy chains of IMMUNOGLOBULIN G. Ig mu Chains,Immunoglobulins, mu-Chain,Immunoglobulin mu-Chain,mu Immunoglobulin Heavy Chain,mu Immunoglobulin Heavy Chains,mu-Chain Immunoglobulins,Chains, Ig mu,Immunoglobulin mu Chain,Immunoglobulin mu Chains,Immunoglobulins, mu Chain,mu Chain Immunoglobulins,mu Chains, Ig,mu-Chain, Immunoglobulin,mu-Chains, Immunoglobulin
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000916 Antibody Diversity The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS. Germ Line Theory,Antibody Diversities,Diversities, Antibody,Diversity, Antibody,Germ Line Theories,Theories, Germ Line,Theory, Germ Line
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

S Cory, and J M Adams, and D J Kemp
September 1985, The Journal of experimental medicine,
S Cory, and J M Adams, and D J Kemp
January 1973, The New England journal of medicine,
S Cory, and J M Adams, and D J Kemp
July 1989, The American journal of pathology,
S Cory, and J M Adams, and D J Kemp
August 1981, Journal of immunology (Baltimore, Md. : 1950),
S Cory, and J M Adams, and D J Kemp
December 1993, Diagnostic molecular pathology : the American journal of surgical pathology, part B,
S Cory, and J M Adams, and D J Kemp
November 1989, [Rinsho ketsueki] The Japanese journal of clinical hematology,
S Cory, and J M Adams, and D J Kemp
October 1993, The Journal of veterinary medical science,
S Cory, and J M Adams, and D J Kemp
May 2005, Toxicology,
S Cory, and J M Adams, and D J Kemp
February 1978, International journal of cancer,
Copied contents to your clipboard!