The calculation of the cytoplasmic free [NADP+]/[NADPH] ratio in brain: effect of electroconvulsive seizure. 1981

D K Merrill, and R W Guynn

This study has investigated the feasibility of calculating the cytoplasmic free [NADP+]/[NADPH] ratio in rat brain. The time course of the change in the substrate ratios of the malate dehydrogenase (decarboxylating) [E.C. 1.1.1.40], NADP+-isocitrate dehydrogenase (decarboxylating) [E.C. 1.1.1.42] and 6-phosphogluconate dehydrogenase (decarboxylating) [E.C. 1.1.1.44] reactions was followed for up to 10 min after a single, unmodified electroconvulsive seizure. From the results it has been concluded that during periods of low flux, the direction and magnitude of the change in the cytoplasmic free [NADP+]/[NADPH] ratio can, in fact, be reasonably determined even though there is some uncertainty in the absolute value of the ratio itself. It is recommended that reliance not be placed on a single enzyme system but that one or both of the other systems also be observed under a given experimental condition to increase confidence in the determination. The results also demonstrate that seizure and anoxia have a far lesser effect on the cytoplasmic free [NADP+]/[NADPH] ratio than on the free [NAD+]/[NADH] ratio in the same compartment. These results suggest that the pathways using the nicotinamide-adenine dinucleotide phosphate system are relatively protected from the rapid fluctuations that seizure and anoxia can produce.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008297 Male Males
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D K Merrill, and R W Guynn
January 1982, Revista espanola de fisiologia,
D K Merrill, and R W Guynn
January 1983, Molecular and cellular biochemistry,
D K Merrill, and R W Guynn
May 1986, No to hattatsu = Brain and development,
D K Merrill, and R W Guynn
January 1985, Voprosy meditsinskoi khimii,
D K Merrill, and R W Guynn
January 1985, Archives of biochemistry and biophysics,
D K Merrill, and R W Guynn
January 1960, Acta psychiatrica Scandinavica. Supplementum,
Copied contents to your clipboard!