Induction of neurofilament triplet proteins in PC12 cells by nerve growth factor. 1982

V Lee, and J Q Trojanowski, and W W Schlaepfer

The localization of neurofilament triplet proteins in PC12 cells grown in the absence of (PC12-) or maintained in the presence of (PC12+) nerve growth factor (NGF) was studied using indirect immunofluorescence and monospecific, immunosorbent purified antibodies to 68,000 (P68), 150,000 (P150) and 200,000 (P200) dalton neurofilament proteins. The intensity of immunofluorescent staining of the triplet proteins was always greater in PC12+ compared with PC12-cells. Neuritic staining was seen in PC12+ cells with all 3 monospecific antibodies to neurofilament proteins. However, the perikaryal distribution of each of the neurofilament proteins differed in both PC12+ and PC12-cells. Monospecific antibodies to P68 protein yielded a 'ball-like' cytoplasmic staining pattern whereas monospecific antibodies by P150 protein stained in a stippled pattern. Monospecific antibodies to P200 on the other hand diffusely stained the perikaryal cytoplasm with very faint but detectable foci of 'ball-like' configurations and stippling. Electron microscopic study of PC12+ and PC12-cells revealed intermediate filaments in the cell bodies of both as well as in the processes of the former. 'Ball-like' clusters of such filaments were rarely seen. However, these filaments lacked the three-dimensional organization typical of intact neurofilaments. It is concluded that PC12 cells contain dissociated or incompletely assembled immunoreactive neurofilament triplet proteins and that these proteins can be induced by NGF. The PC12 cells are therefore an attractive model system not only for studies of neuronal differentiation but also for studies of neurofilament metabolism and disorders thereof.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010673 Pheochromocytoma A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298) Pheochromocytoma, Extra-Adrenal,Extra-Adrenal Pheochromocytoma,Extra-Adrenal Pheochromocytomas,Pheochromocytoma, Extra Adrenal,Pheochromocytomas,Pheochromocytomas, Extra-Adrenal
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

V Lee, and J Q Trojanowski, and W W Schlaepfer
January 1987, The Journal of biological chemistry,
V Lee, and J Q Trojanowski, and W W Schlaepfer
January 1992, Journal of neuroscience research,
V Lee, and J Q Trojanowski, and W W Schlaepfer
August 1981, Journal of neurochemistry,
V Lee, and J Q Trojanowski, and W W Schlaepfer
December 1986, The EMBO journal,
V Lee, and J Q Trojanowski, and W W Schlaepfer
January 1993, Journal of molecular neuroscience : MN,
V Lee, and J Q Trojanowski, and W W Schlaepfer
July 1990, The Journal of biological chemistry,
V Lee, and J Q Trojanowski, and W W Schlaepfer
May 1996, The Journal of biological chemistry,
V Lee, and J Q Trojanowski, and W W Schlaepfer
June 1998, The European journal of neuroscience,
V Lee, and J Q Trojanowski, and W W Schlaepfer
October 1996, Brain research,
Copied contents to your clipboard!