Clearance kinetics and fate of mouse IgA immune complexes prepared with monomeric or dimeric IgA. 1983

A Rifai, and M Mannik

To determine the pathophysiologic mechanism(s) involved in experimental IgA nephropathy, the clearance kinetics and tissue distribution of soluble IgA immune complexes in mice were investigated. Purified radiolabeled dimeric (dIgA) and monomeric (mIgA) IgA antidinitrophenyl, obtained from MOPC-315, were covalently cross-linked with a bivalent affinity-labeling antigen, bis-2,4-dinitrophenyl pimelic ester. After i.v. injection, heavy polymers (greater than 1.2 X 10(6) m.w.) were rapidly removed from circulation. Analysis of circulating intermediate-latticed complexes by gradient polyacrylamide gel electrophoresis indicated that polymers with a minimal composition of four dIgA or eight mIgA were required for rapid elimination. The dIgA and mIgA complexes with lattices smaller than this critical size were removed at slower rates (yielding a t1/2 of 35 min for complexes with dIgA and a t1/2 of 60 min for complexes with mIgA). Tissue distribution of both dIgA and mIgA immune complexes was similar. The liver was the major organ involved in uptake of IgA immune complexes with an insignificant amount in the bile. Heavy polymers of dIgA or mIgA were predominantly localized in the hepatic nonparenchymal cells.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004064 Digestive System A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS). Ailmentary System,Alimentary System
D005260 Female Females
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Rifai, and M Mannik
May 1985, Clinical and experimental immunology,
A Rifai, and M Mannik
November 2018, Seminars in immunopathology,
A Rifai, and M Mannik
October 1989, Laboratory investigation; a journal of technical methods and pathology,
A Rifai, and M Mannik
October 1989, Laboratory investigation; a journal of technical methods and pathology,
A Rifai, and M Mannik
January 1992, Laboratory investigation; a journal of technical methods and pathology,
A Rifai, and M Mannik
December 2001, Inorganic chemistry,
A Rifai, and M Mannik
January 1983, Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association,
A Rifai, and M Mannik
August 2010, Inorganic chemistry,
Copied contents to your clipboard!