Methionine synthesis from 5'-S-Methylthioadenosine. Resolution of enzyme activities and identification of 1-phospho-5-S methylthioribulose. 1983

P C Trackman, and R H Abeles

5'-S-Methylthioadenosine is converted to methionine in mammalian systems, microorganisms and plants. 5'-S-Methylthioadenosine is first converted to 1-phospho-5-S-methylthioribofuranoside (1-PMTR) which is then converted to 2-keto-4-S-methylthiobutyrate, the precursor of methionine. We have now investigated the conversion of 1-PMTR to the keto acid. This conversion requires at least three protein fractions designated A, B, and C. Fraction A catalyzes an isomerization of 1-PMTR to form 1-phospho-5-S-methylthioribulose. The identification of this compound is based in part on the products obtained after NaIO4 oxidation, i.e. S-methylthioacetaldehyde, formate, and phosphoglycolic acid. When fractions A and B are added to 1-PMTR, two additional compounds, designated II and III, were detected. No O2 was consumed in the formation of compounds II and III. These compounds are, therefore, at the oxidation state of 5-S-methylthioribose. Compound II is phosphorylated as evidenced by its electrophoretic behavior before and after alkaline phosphatase treatment. Addition of fraction C to compounds II and III leads to O2 consumption and to the conversion of these compounds to 2-keto-4-S-methylthiobutyrate. Thus, compounds II and III are precursors of the keto acid. These compounds have not been fully characterized.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010428 Pentosephosphates
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

P C Trackman, and R H Abeles
February 1981, The Journal of biological chemistry,
P C Trackman, and R H Abeles
October 1983, Biochemical pharmacology,
P C Trackman, and R H Abeles
July 1983, Biochemical and biophysical research communications,
P C Trackman, and R H Abeles
September 1982, Biochemical and biophysical research communications,
P C Trackman, and R H Abeles
July 1988, The Journal of biological chemistry,
P C Trackman, and R H Abeles
January 1986, Advances in experimental medicine and biology,
P C Trackman, and R H Abeles
May 2006, Bioorganic & medicinal chemistry letters,
P C Trackman, and R H Abeles
May 1981, Biochemical and biophysical research communications,
Copied contents to your clipboard!