Biosynthesis and transport of cathepsin D in cultured human fibroblasts. 1983

V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura

For study of the time order of glycosylation, formation of complex oligosaccharides and proteolytic maturation as well as the site of proteolytic maturation of cathepsin D, fibroblasts were subjected to pulse-chase labeling, and cathepsin D was isolated from either total cell extracts or subcellular fractions by immune precipitation and analyzed for its molecular forms and sensitivity to endo-beta-N-acetylglucosaminidase H. After a 10-min pulse, cathepsin D was detected in its glycosylated precursor form, indicating an early, probably a cotranslational, N-glycosylation of cathepsin D. Conversion of the high-mannose oligosaccharide side chains into forms resistant to endo-beta-N-acetylglucosaminidase H started after approximately 40 min, indicating that transport of cathepsin D from the endoplasmic reticulum to the trans-Golgi apparatus requires approximately 40 min. Processing of the 53-kdalton precursor polypeptide of cathepsin D to a 47-kdalton intermediate followed about 20 min after the formation of complex oligosaccharides, and, another 30 min later, 31-kdalton mature forms of cathepsin D were detected. Processing of cathepsin D was first observed in light membranes as a partial conversion of the 53-kdalton precursor into the 47-kdalton intermediate. Both the precursor and the intermediate are transferred into the high density-class lysosomes. After 8 h, the processing to the mature 31-kdalton form of cathepsin D is mostly completed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002402 Cathepsin D An intracellular proteinase found in a variety of tissue. It has specificity similar to but narrower than that of pepsin A. The enzyme is involved in catabolism of cartilage and connective tissue. EC 3.4.23.5. (Formerly EC 3.4.4.23).
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme

Related Publications

V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
November 1985, European journal of biochemistry,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
September 1987, The Journal of biological chemistry,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
October 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
January 1976, Archives internationales de physiologie et de biochimie,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
June 1988, Biological chemistry Hoppe-Seyler,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
March 2001, Bone,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
November 1984, The Journal of biological chemistry,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
April 1988, Biochemical and biophysical research communications,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
February 1980, Biulleten' eksperimental'noi biologii i meditsiny,
V Gieselmann, and R Pohlmann, and A Hasilik, and K Von Figura
January 1984, The Journal of biological chemistry,
Copied contents to your clipboard!