Nerve regeneration and Schwann cell basal lamina: observations of the long-term regeneration. 1983

C Ide

Nerve segments approximately 6-7 mm long were excised from the predegenerated sciatic nerves of mice, and treated 5 times by repetitive freezing and thawing to kill the Schwann cells. Such treated nerve segments were grafted into the original place, being in contact with the proximal stump of the sciatic nerve. The animals were sacrificed 2, 3, 5, 7 and 10 days, 2, 3, 5 and 8 weeks after the grafting. The grafts were examined at the middle level, i.e., about 3-4 mm distal to the proximal end of the graft, by light and electron microscopy. Within 2-3 days after the grafting, the dead Schwann cells were disintegrated into fragments and gradually phagocytized by macrophages. However, the basal laminae of the Schwann cells remained as empty tubes (basal lamina scaffolds). The notable finding was that the regenerating axons always grew through these basal lamina scaffolds. New Schwann cells seemed to migrate along these axons from the proximal stumps. The number of axons growing through the basal lamina scaffolds gradually increased with time. These axons were surrounded in a bundle by Schwann cells. About 1 week after the grafting, axons began to be segregated into smaller bundles by Schwann cells. Axons with a relatively large diameter (about 2 microns) tended to be sorted out and surrounded by their own Schwann cells. The myelination began about 2 weeks after the grafting on such large diameter axons. The basal lamina scaffolds, through which the regenerating axons had grown, were gradually disintegrated into fragments by the expansive forces due to the increase in number and volume of the regenerating axons and Schwann cells. Groups of axons, which had been derived from the same basal lamina scaffolds, were enclosed with the cells resembling perineurial epithelial cells. These perineurial epithelial cells proliferated and further separated groups of axons into smaller ones or even into single axons. The number of myelinated axons increased with the advancement of regeneration. These results show that the basal lamina scaffolds of Schwann cells serve as efficient conduits for the elongation, maintenance and maturation of regenerating axons.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Copied contents to your clipboard!